The potential of natural products use in fused deposition modeling 3D printing of pharmaceutical dosage forms

  • Jelena Čanji Panić University of Novi Sad – Faculty of Medicine, Department of Pharmacy
  • Nemanja Todorović University of Novi Sad – Faculty of Medicine, Department of Pharmacy
  • Ana Stjepanović University of Novi Sad – Faculty of Medicine, Department of Pharmacy
  • Mladena Lalić-Popović University of Novi Sad – Faculty of Medicine, Department of Pharmacy; Centre for Medical and Pharmaceutical Investigations and Quality Control
Keywords: biopolymers, natural fillers, natural plasticizers, FDM, three-dimensional printing


In recent years, the interest in 3D printing of medicines has increased due to many advantages of this technology, such as flexibility of the dose and dosage form of the printed product. Fused deposition modeling (FDM) is one of the most popular 3D printing technologies in the pharmaceutical field, due to its low cost and simplicity. The subject of this review is the potential use of natural products as biodegradable and biocompatible materials with good safety profiles in FDM 3D printing of pharmaceuticals. Natural products such as alginate, chitosan and starch have already been employed as excipients in FDM 3D printed pharmaceutical dosage forms, while others like shellac and zein show the potential, but haven’t yet been part of 3D printed pharmaceutical formulations. These excipients have different roles in the formulation of filaments for FDM 3D printing, for example as fillers, matrix carriers or drug-release modifiers. In addition, the possibility of incorporating active pharmaceutical ingredients of natural origin in filaments for FDM 3D printing was reviewed. High printing temperatures limit the use of natural products in FDM 3D printing. However, adequate selection of thermoplastic material and printing parameters can widen the use of natural products in FDM 3D printing of pharmaceutical dosage forms.


1.      Jose PA, GV PC. 3D printing of pharmaceuticals–a potential technology in developing personalized medicine. Asian J Pharm Res Dev. 2018;6(3):46-54.

2.      Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliver Rev. 2017;108:39-50.

3.      Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes Á. Translating 3D printed pharmaceuticals: from hype to real-world clinical applications. Adv Drug Deliver Rev. 2021;174:553-75.

4.      Kim JH, Kim K, Jin, HE. Three-Dimensional Printing for Oral Pharmaceutical Dosage Forms. J Pharm Investig. 2022;52:293–317.

5.      Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA. 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm. 2021;600:120501.

6.      Pitzanti G, Mathew E, Andrews GP, Jones DS, Lamprou DA. 3D Printing: an appealing technology for the manufacturing of solid oral dosage forms. J Pharm Pharmacol. 2022;20:1-22.

7.      Brambilla CRM, Okafor-Muo OL, Hassanin H, ElShaer A. 3DP printing of oral solid formulations: a systematic review. Pharmaceutics. 2021;13:1–25.

8.      Azad MA, Olawuni D, Kimbell G, Badruddoza A, Hossain MS, Sultana T. Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials-Process Perspective. Pharmaceutics, 2020;12(2):124.

9.      Tagami T, Kuwata E, Sakai N, Ozeki T. Drug Incorporation into Polymer Filament Using Simple Soaking Method for Tablet Preparation Using Fused Deposition Modeling. Biol Pharm Bull. 2019;42(10):1753-60.

10.  Pereira GG, Figueiredo S, Fernandes AI, Pinto JF. Polymer Selection for Hot-Melt Extrusion Coupled to Fused Deposition Modelling in Pharmaceutics. Pharmaceutics 2020;12(9):795.

11.  Melocchi A, Parietti F, Maroni A, Foppoli A, Gazzaniga A, Zema L. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling. Int J Pharm. 2016;509(1-2):255–63.

12.  Prasad LK, Smyth H. 3D Printing technologies for drug delivery: A review. Drug Dev Ind Pharm. 2016;42(7):1019-31.

13.  Aguilar-de-Leyva Á, Linares V, Casas M, Caraballo I. 3D Printed Drug Delivery Systems Based on Natural Products. Pharmaceutics. 2020;12(7):620.

14.  Quodbach J, Bogdahn M, Breitkreutz J, Chamberlain R, Eggenreich K, Elia AG, et al. Quality of FDM 3D Printed Medicines for Pediatrics: Considerations for Formulation Development, Filament Extrusion, Printing Process and Printer Design. The Innov Regul Sci. 2022;56(6):910-28.

15.  Chaunier L, Guessasma S, Belhabib S, Della Valle G, Lourdin D, Leroy E. Material extrusion of plant biopolymers: Opportunities & challenges for 3D printing. Addit Manuf. 2018;21:220-33.

16.  Mazzanti V, Malagutti L, Mollica F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers. 2019;11(7):1094.

17.   Ehtezazi T, Sarker SD. The Use of natural Products in 3D Printing of Pharmaceutical Dosage Forms. J Nat Prod Disc. doi: 10.24377/jnpd.article654.

18.  Kempin W, Franz C, Koster LC, Schneider F, Bogdahn M, Weitschies W, et al. Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. Eur J Pharm Biopharm. 2017;115:84-93.

19.  Domínguez-Robles J, Martin N, Fong M, Stewart S, Irwin N, Rial-Hermida M, et al. Antioxidant PLA composites containing lignin for 3d printing applications: a potential material for healthcare applications. Pharmaceutics. 2019;11(4):165.

20.  Szekalska M, Puciłowska A, Szymańska E, Ciosek P, Winnicka K. Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. Int J Polym Sci. 2016;8:1–17.

21.  Mirdamadian SZ, Varshosaz J, Minaiyan M, Taheri A. 3D printed tablets containing oxaliplatin loaded alginate nanoparticles for colon cancer targeted delivery. An in vitro/in vivo study. Int J Biol Macromol. 2022;205:90-109.

22.  Yang Y, Wang H, Li H, Ou Z, Yang G. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. Eur J Pharm Sci. 2018;115:11-8.

23.  Gioumouxouzis CI, Chatzitaki AT, Karavasili C, Katsamenis OL, Tzetzis D, Mystiridou E, et al. Controlled release of 5-fluorouracil from alginate beads encapsulated in 3D printed pH-responsive solid dosage forms. AAPS Pharm Sci Tech. 2018;19(8):3362-75.

24.  Cheung RC, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13(8):5156-86.

25.  Eleftheriadis GK, Ritzoulis C, Bouropoulos N, Tzetzis D, Andreadis DA, Boetker J, et al. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: In vitro and ex vivo evaluation. Eur J Pharm Biopharm. 2019;144:180-92.

26.  Yang Y, Wu H, Fu Q, Xie X, Song Y, Xu M, Li J. 3D-Printed Polycaprolactone-Chitosan based drug delivery implants for personalized administration. Mater Des. 2022;214:110394.

27.  Zamboulis A, Michailidou G, Koumentakou I, Bikiaris DN. Polysaccharide 3D Printing for Drug Delivery Applications. Pharmaceutics. 2022;14(1):145.

28.  Freitas CM, Coimbra JS, Souza VG, Sousa RC. Structure and applications of pectin in food, biomedical, and pharmaceutical industry: A review. Coatings. 2021;11(8):922.

29.  Lee SH, Cho YH, Lee GW. The Development of Gastro-Retentive Tablet using Hot Melt Extrusion and 3D Printing Technology. J Pharm Soc Korea. 2022;66(2):76-89.

30.  Wasti S, Adhikari S. Use of biomaterials for 3D printing by fused deposition modeling technique: a review. Front Chem. 2020;8:315.

31.  Aida HJ, Nadlene R, Mastura MT, Yusriah L, Sivakumar D, Ilyas RA. Natural fibre filament for Fused Deposition Modelling (FDM): A review. Int J Sustain Eng. 2021;14(6):1988-2008.

32.  Rowe CR, Sheskey JP, Quinn EM. Handbook of Pharmaceutical Excipients. 6th ed. Grayslake: Pharmaceutical Press and Washington, DC: American Pharmacists Association; 2009.

33.  Ehtezazi T, Algellay M, Islam Y, Roberts M, Dempster NM, Sarker SD. The application of 3D printing in the formulation of multilayered fast dissolving oral films. J Pharm Sci. 2018;107(4):1076-85.

34.  Mendibil X, Tena G, Duque A, Uranga N, Campanero MÁ, Alonso J. Direct powder extrusion of paracetamol loaded mixtures for 3D printed pharmaceutics for personalized medicine via low temperature thermal processing. Pharmaceutics. 2021;13(6):907.

35.  George A, Shah PA, Shrivastav PS. Guar gum: Versatile natural polymer for drug delivery applications. Eur Polym J. 2019;112:722-35.

36.  Ju Q, Tang Z, Shi H, Zhu Y, Shen Y, Wang T. Thermoplastic starch based blends as a highly renewable filament for fused deposition modeling 3D printing. Int J Biol Macromol. 2022;219:175-84.

37.  Kuo CC, Liu LC, Teng WF, Chang HY, Chien FM, Liao SJ, et al. Preparation of starch/acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos Part B Eng. 2016;86:36-9.

38.  Zhao YQ, Yang JH, Ding X, Ding X, Duan S, Xu FJ. Polycaprolactone/polysaccharide functional composites for low-temperature fused deposition modelling. Bioact Mater. 2020;5(2):185-91.

39.  Giri BR, Poudel S, Kim DW. Cellulose and its derivatives for application in 3D printing of pharmaceuticals. J Pharm Investig. 2021;51(1):1-22.

40.  Chen Z, Zhang J, Xiao P, Tian W, Zhang J. Novel thermoplastic cellulose esters containing bulky moieties and soft segments. ACS Sustain Chem Eng. 2018;6(4):4931-9.

41.  Zhang J, Feng X, Patil H, Tiwari RV, Repka MA. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519(1-2):186–97.

42.  Zhang J, Xu P, Vo AQ, Bandari S, Yang F, Durig T, Repka MA. Development and evaluation of pharmaceutical 3D printability for hot melt extruded cellulose-based filaments. J Drug Deliv Sci Technol. 2019;52:292–302.

43.   Pietrzak K, Isreb A, Alhnan MA. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur J Pharm Biopharm. 2015;96:380–7.

44.  Arafat B, Wojsz M, Isreb A, Forbes RT, Isreb M, Ahmed W, et al. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets. Eur J Pharm Sci. 2018;118:191–9.

45.  Chai X, Chai H, Wang X, Yang J, Li J, Zhao Y, et al. Fused deposition modeling (FDM) 3D printed tablets for intragastric floating delivery of domperidone. Sci Rep. 2017;7(1):1–9.

46.  Kimura SI, Ishikawa T, Iwao Y, Itai S, Kondo H. Fabrication of zero-order sustained-release floating tablets via fused depositing modeling 3D printer. Chem Pharm Bull. 2019;67(9):992–9.

47.  Zhang AJ, Yang W, Vo AQ, Feng X. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydr Polym. 2017;177:49–57.

48.  Solanki NG, Tahsin M, Shah AV, Serajuddin ATM. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: Screening polymers for drug release, drug-polymer miscibility and printability. J Pharm Sci. 2018;107(1):390–401.

49.  Ilyés K, Balogh A, Casian T, Igricz T, Borbás E, Démuth B, et al. 3D floating tablets: Appropriate 3D design from the perspective of different in vitro dissolution testing methodologies. Int J Pharm. 2019;567:118433.

50.  Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm. 2017;527(1-2):21–30.

51.  Chansatidkosol S, Limmatvapirat C, Piriyaprasarth S, Patomchaiviwat V, Limmatvapirat S. Assessment of Shellac as Alternative Material for Preparation of Fused Deposition Modeling (FDM) 3D Printing Filaments. Key Eng Mater. 2022;914:53–62.

52.  Chaunier L, Leroy E, Valle GD, Dalgalarrondo M, Bakan B, Marion D, Madec B, Lourdin D. 3D printing of maize protein by fused deposition modeling. AIP Conf Proc. 2017;1914:190003.

53.  Calì M, Pascoletti G, Gaeta M, Milazzo G, Ambu R. New filaments with natural fillers for FDM 3D printing and their applications in biomedical field. Procedia Manuf. 2020;51:698-703.

54.  Balla VK, Tadimeti JG, Sudan K, Satyavolu J, Kate KH. First report on fabrication and characterization of soybean hull fiber: polymer composite filaments for fused filament fabrication. Prog Addit Manuf. 2021;6(1):39-52.

55.  Balla VK, Tadimeti JG, Kate KH, Satyavolu J. 3D printing of modified soybean hull fiber/polymer composites. Mater Chem Phys. 2020;254:123452.

56.  Tran TN, Bayer IS, Heredia‐Guerrero JA, Frugone M, Lagomarsino M, Maggio F, et al. Cocoa shell waste biofilaments for 3D printing applications. Macromol Mater Eng. 2017;302(11):1700219.

57.  Liu H, He H, Peng X, Huang B, Li J. Three‐dimensional printing of poly (lactic acid) bio‐based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Poly Advan Technol. 2019;30(4):910-22.

58.  Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, et al. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malaria J. 2011;10(1):1-2.

59.  Hewlings SJ, Kalman DS. Curcumin: A Review of Its Effects on Human Health. Foods. 2017;6(10):92.

60.  Chuah AM, Jacob B, Jie Z, Ramesh S, Mandal S, Puthan JK, et al. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chem. 2014;156:227–33.

61.  Pinho LAG, Souza SG, Marreto RN, Sa-Barreto LL, Gratieri T, Gelfuso GM, et al. Dissolution enhancement in cocoa extract, combining hydrophilic polymers through hot-melt extrusion. Pharmaceutics 2018;10(3):135.

62.  Wang W, Kang Q, Liu N, Zhang Q, Zhang Y, Li H, et al. Enhanced dissolution rate and oral bioavailability of Ginkgo biloba extract by preparing solid dispersion via hot-melt extrusion. Fitoterapia. 2015;102:189–97.

63.  Jiang Y, Piao J, Cho HJ, Kang WS, Kim HY. Improvement in antiproliferative activity of Angelica gigas Nakai by solid dispersion formation via hot-melt extrusion and induction of cell cycle arrest and apoptosis in HeLa cells. Biosci Biotechnol Biochem. 2015;79(10):1635-43.

64.   Azad MOK, Kang WS, Lim JD, Park CH. Bio-Fortification of Angelica gigas Nakai Nano-Powder Using Bio-Polymer by Hot Melt Extrusion to Enhance the Bioaccessibility and Functionality of Nutraceutical Compounds. Pharmaceuticals. 2020;13(1):3.

65.  Ashour EA, Majumdar S, Alsheteli A, Alshehri S, Alsulays B, Feng X, et al. Hot melt extrusion as an approach to improve solubility, permeability and oral absorption of a psychoactive natural product, piperine. J Pharm Pharmacol. 2016;68(8):989–98.

66.  Kulkarni C, Kelly AL, Gough T, Jadhav V, Singh KK, Paradkar A. Application of hot melt extrusion for improving bioavailability of artemisinin a thermolabile drug. Drug Dev Ind Pharm. 2018;44(2):206–14.

67.  Oh KS, Song JY, Cho SH, Lee BS, Kim SY, Kim K, et al. Paclitaxel-loaded pluronic nanoparticles formed by a temperature-induced phase transition for cancer therapy. J Control Release. 2010;148(3):344–50.

68.  Khor CM, Ng WK, Kanaujia P, Chan KP, Dong Y. Hot-melt extrusion microencapsulation of quercetin for taste-masking. J Microencapsul. 2017;34(1):29-37

Review articles