Modeling of in vitro drug release from polymeric microparticle carriers

  • Ljiljana Djekić University in Belgrade – Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology
  • Ana Ćirić University in Belgrade – Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology
Keywords: microencapsulation, polymer microparticles, in vitro drug release, mathematical modeling of drug release kinetics

Abstract


Incorporation of active substances in polymer microparticles (microencapsulation) is important technological strategy used in pharmaceutical industry to improve quality, safety and/or therapeutic efficiency of pharmaceutical preparations for different routes of administration. The current focus is on encapsulation of small molecules and macromolecules into microparticles based on biocompatible synthetic polymers and biopolymers, such as polypeptides and polysaccharides, in order to achieve preferable drug release kinetics. Diversity in microparticle structure and size, choice of polymers, and manufacturing processes, allows designing of a multitude of microcarriers (e.g., monolithic matrix microspheres, hollow microcapsules, water- or oil-core microcapsules, stimulus-sensitive microcapsules), whereby their impact on biopharmaceutical profile of drugs can be manipulated. The results so far indicate that the in vitro drug release kinetics evaluation is one of the key aspects of the microparticle-type carrier characterization, where the application of the mathematical analysis of release profiles is an important tool for elucidating drug release mechanisms as well as for evaluating the influence and optimization of formulation and process parameters in microencapsulation procedure. The article reviews representative studies in which mathematical modeling of experimentally obtained release data was performed for microencapsulated model drugs with different physicochemical properties, as well as significance and potential limitations of this approach.

References

1.          Lam PL, Gambari R. Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release. 2014;178:25-45.

2.          Dai C, Wang B, Zhao H. Microencapsulation peptide and protein drugs delivery system. Colloids Surf B Biointerfaces. 2005;41(2-3):117-120.

3.          Ma G. Microencapsulation of protein drugs for drug delivery: Strategy, preparation, and applications. J Control Release. 2014;193:324-340.

4.          Desai S, Perkins J, Harrison BS, Sankar J. Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications. Mater Sci Eng B Solid State Mater Adv Technol. 2010;168:127–131.

5.          El Itawi H, Fadlallah S, Allais F, Perre P. Green assessment of polymer microparticles production processes: a critical review. Green Chem. 2022;24;4237-4269.

6.          Bhujel R, Maharjan R, Kim NA, Jeong SH. Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol. 2021;64:102608

7.          Craig M, Schuster E, Holmberg K. Biodegradable nanofilms on microcapsules for controlled release of drugs to infected chronic wounds. 5th International conference on Advanced Nano Materials. Materials Today: Proceedings.  2015;2:118-125.

8.          Guo B, Zhu C, Huang Z, Yang R, Liu C. Microcapsules with slow-release characteristics prepared by soluble small molecular starch fractions through the spray drying method. Int J Biol Macromol. 2022;200:34-41.

9.          Ćirić A, Medarević Đ, Čalija B, Dobričić V, Mitrić M, Djekic L. Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics. Int J Biol Macromol. 2020;148:942–55.

10.       Ćirić A, Medarević Đ, Čalija B, Dobričić V, Rmandić M, Barudžija T, et al. Effect of ibuprofen entrapment procedure on physicochemical and controlled drug release performances of chitosan/xanthan gum polyelectrolyte complexes. Int J Biol Macromol. 2021;167:547–58.

11.       Ćirić A, Milinković-Budinčić J, Medarević Đ, Dobričić V, Rmandić M, Barudžija T, et al. Influence of spray-drying process on properties of chitosan/xanthan gum polyelectrolyte complexes as carriers for oral delivery of ibuprofen. Arh Farm (Belgr). 2022;72(1):36–60.

12.       Wang C, Ye W, Zheng Y, Liu X, Tong Z. Fabrication of drug-loaded biodegradable microcapsules for controlled release by combination of solvent evaporation and layer-by-layer self-assembly. Int J Pharm. 2007;338:165-173.

13.       Heidari S, Akhlaghi M, Sadeghi M, Kheirabadi AM, Beiki D, Ardekani AE, et al. Development of 64Cu-DOX/DOX-loaded chitosan-BSA multilayered hollow microcapsules for selective lung drug delivery. J Drug Deliv Sci Technol. 2022;73:103477.

14.       Li Z, Du X, Cui X, Wang Z. Ultrasonic-assisted fabrication and release kinetics of two model redoxresponsive magnetic microcapsules for hydrophobic drug delivery. Ultrason Sonochem. 2019;57:223-232.

15.       Mackiewicz M, Romanski J, Drabczyk K, Waleka E, Stojek Z, Karbarz M. Degradable, thermo-, pH- and redox-sensitive hydrogel microcapsules for burst and sustained release of drugs. Int J Pharm. 2019;569:118589.

16.       Cui X, Guan X, Zhong S, Chen J, Zhu H, Li Z, et al. Multi-stimuli Responsive Smart Chitosan-based Microcapsules for Targeted Drug Delivery and Triggered Drug Release. Ultrason Sonochem. 2017;38:145-153.

17.       Shi C, Zhong S, Sun Y, Xu L, He S, Dou Y, et al. Sonochemical preparation of folic acid-decorated reductive-responsive εpoly-L-lysine-based microcapsules for targeted drug delivery and reductive-triggered release. Mater Sci Eng C. 2020;106:110251.

18.       Wang A, Tao C, Cui Y, Duan L, Yang Y, Li J. Assembly of environmental sensitive microcapsules of PNIPAAm and alginate acid and their application in drug release. J Colloid Interface Sci. 2009;332:271-279.

19.       Niu Y, Stadler FJ, Song J, Chen S, Chen S. Facile fabrication of polyurethane microcapsules carriers for tracing cellular internalization and intracellular pH-triggered drug release. Colloids Surf B Biointerfaces. 2017;153:160-167.

20.       Zhao Q, Li B. pH-controlled drug loading and release from biodegradable microcapsules. Nanomed: Nanotechnol Biol Med. 2008;4:302-310.

21.       Čalija B, Cekić N, Savić S, Daniels R, Marković B, Milić J. pH-sensitive microparticles for oral drug delivery based on alginate/oligochitosan/Eudragit® L100-55 "sandwich" polyelectrolyte complex.  Colloids Surf B Biointerfaces. 2013;110:395-402.

22.       Samanta MS, Gautam D, Chandel MW, Sawant G, Sharma K. A review on microspheres as a novel controlled drug delivery system. Asian J Pharm Clin Res. 2021;14(4):3–11.

23.       Bidkar S, Maniyar S, Bidkar J, Mantry S, Dama G. A Simplified Review on Microsphere and Their Different Applications. J Pharm Res Int. 2022;34:24–36.

24.       Raj H, Sharma S, Sharma A, Verma KK, Chaudhary A. A Novel Drug Delivery System: Review on Microspheres. J Drug Deliv Ther. 2021;11(2-S):156–61.

25.       Zhang M, Yang Z, Chow L-L, Wang C-H. Simulation of drug release from biodegradable polymeric microspheres with bulk and surface erosions. J Pharm Sci. 2003;92(10):2040-56.

26.       Harland RS, Dubernet C, Nikolaos J-PB, Peppas NA. A model of dissolution-controlled, diffusional drug release from non-swellable polymeric microspheres. J Control Release. 1988;7(3):207-15.

27.       Abadi SSH, Gangadharappa HV, Balamuralidhara V. Development of colon-specific mucoadhesive meloxicam microspheres for the treatment of CFA-induced arthritis in rats. Int J Polym Mater Polym Biomater. 2021;70(12):849–69.

28.       Sharma N, Deshpande RD, Sharma D, Sharma RK. Development of locust bean gum and xanthan gum based biodegradable microparticles of celecoxib using a central composite design and its evaluation. Ind Crops Prod. 2016;82:161–70.

29.       Cho AR, Chun YG, Kim BK, Park DJ. Preparation of alginate-CaCl2 microspheres as resveratrol carriers. J Mater Sci. 2014;49(13):4612–9.

30.       Sharma VK, Sharma PP, Mazumder B, Bhatnagar A, Subramaniyan V, Fuloria S, et al. Mucoadhesive microspheres of glutaraldehyde crosslinked mucilage of Isabgol husk for sustained release of gliclazide. J Biomater Sci Polym Ed. 2021;32(11):1420–49.

31.       Outuki PM, de Francisco LMB, Hoscheid J, Bonifácio KL, Barbosa DS, Cardoso MLC. Development of arabic and xanthan gum microparticles loaded with an extract of Eschweilera nana Miers leaves with antioxidant capacity. Colloids Surfaces A Physicochem Eng Asp. 2016;499:103–12.

32.       Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B, et al. Novel interpenetrating network microspheres of xanthan gumpoly(vinyl alcohol) for the delivery of diclofenac sodium to the intestine in vitro and in vivo evaluation. Drug Deliv. 2010;17(7):508–19.

33.       Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B, et al. Novel interpenetrating network microspheres of xanthan gumpoly(vinyl alcohol) for the delivery of diclofenac sodium to the intestinein vitro and in vivo evaluation. Drug Deliv. 2010;17(7):508–19.

34.       Desai KGH, Park HJ. Preparation of cross-linked chitosan microspheres by spray drying: Effect of cross-linking agent on the properties of spray dried microspheres. J Microencapsul. 2005;22(4):377–95.

35.       Bhattacharya SS, Mazahir F, Banerjee S, Verma A, Ghosh A. Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres. Carbohydr Polym. 2013;98(1):64–72.

36.       Ćirić A, Budinčić JM, Medarević Đ, Dobričić V, Rmandić M, Barudžija T, et al. Evaluation of chitosan/xanthan gum polyelectrolyte complexes potential for pH-dependent oral delivery of escin. Int J Biol Macromol. 2022;221:48–60.

37.       Mahajan HS, Gattani SG. Gellan gum based microparticles of metoclopromide hydrochloride for intranasal delivery: Development and evaluation. Chem Pharm Bull. 2009;57(4):388–92.

38.       Addo RT, Yeboah KG, Siwale RC, Siddig A, Jones A, Ubale RV, et al. Formulation and characterization of atropine sulfate in albumin-chitosan microparticles for in vivo ocular drug delivery. J Pharm Sci. 2015;104(5):1677–90.

39.       Dimer FA, Ortiz M, Pohlmann AR, Guterres SS. Inhalable resveratrol microparticles produced by vibrational atomization spray drying for treating pulmonary arterial hypertension. J Drug Deliv Sci Technol. 2015;29:152–8.

40.       Carr E, Pontrelli G. Drug delivery from microcapsules: How can we estimate the release time? Math Biosci. 2019; 315:108216.

41.       Song X-C, Yu Y-L, Yang G-Y, Jiang A-L, Ruan Y, Fan S. One-step emulsification for controllable preparation of ethyl cellulose microcapsules and their sustained release performance. Colloids Surf B Biointerfaces. 2022;213:112560.

42.       Zhang F, Wu Q, Chen Z-C, Zhang M, Lin X-F. Hepatic-targeting microcapsules construction by self-assembly of bioactive galactose-branched polyelectrolyte for controlled drug release system. J Colloid Interface Sci. 2008;317:477–484.

43.       Luo Z, Zhao G, Panhwar F, Akbar MF, Shu Z. Well-designed microcapsules fabricated using droplet-based microfluidic technique for controlled drug release. J Drug Deliv Sci Technol. 2017;39:379–384.

44.       Huo W, Zhang W, Wang W, Zhou X. Physicochemical properties and drug release behavior of biguanidino and O-carboxymethyl chitosan microcapsules. Int J Biol Macromol. 2014;70:257-265.

45.       Sua T, Wua Q-X, Chen Y, Zhao J, Cheng X-D, Chen J. Fabrication of the polyphosphates patched cellulose sulfate-chitosan hydrochloride microcapsules and as vehicles for sustained drug release. Int J Pharm. 2019;555:291–302.

46.       Abuhamdan RM, Al-Anati BH, Al Thaher Y, Shraideh ZA, Alkawareek MY, Abulateefeh SR. Aqueous core microcapsules as potential long-acting release systems for hydrophilic drugs. Int J Pharm. 2021;606:120926.

47.       Abulateefeh SR, Alkawareek MY, Alkilany AM. Tunable sustained release drug delivery system based on mononuclear aqueous core-polymer shell microcapsules. Int J Pharm. 2019;558:291–298.

48.       47. Abulateefeh SR, Alkilany AM.  Synthesis and Characterization of PLGA Shell Microcapsules Containing Aqueous Cores Prepared by Internal Phase Separation. AAPS PharmSciTech. 2016;17(4):891-897.  

49.       Siegel RA, Rathborne MJ. Overview of Controlled Release Mechanisms. In: Siepmann J, Siegel RA, Rathborne MJ, editors. Fundamentals and Applications of Controlled Release Drug Delivery. New York: Springer; 2012; pp. 19-43.

50.       Husmann M, Schenderlein S, Luck M, Lindner H. Polymer erosion in PLGA microparticles produced by phase separation method. Int J Pharm. 2002;242(1-2):277-280.

51.       Kupikowska-Stobba B, Grzeczkowicz M, Lewinska D. A one-step in vitro continuous flow assessment of protein release from core-shell polymer microcapsules designed for therapeutic protein delivery. Biocybern Biomed Eng. 2021;41:1347-1364.

52.       Li C, Fang K, He W, Li K, Jiang Y, Li J. Evaluation of chitosan-ferulic acid microcapsules for sustained drug delivery: Synthesis, characterizations, and release kinetics in vitro. J Mol Struct. 2021;1227:129353.

53.       Milinković Budinčić J, Petrović L, Ðekić Lj, Fraj J, Bučko S, Katona J, et al. Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydr Polym. 2021;251:116988.

54.       Milinković Budinčić J, Petrović L, Ðekić Lj, Aleksić M, Fraj J, Popović S, et al. Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile-Understanding the Effect of Anionic Surfactant. Pharmaceuticals. 2022;15:54.

55.       Bajac J, Nikolovski B, Lončarević I, Petrović J, Bajac B, Đurović S, et al. Microencapsulation of juniper berry essential oil (Juniperus communis L.) by spray drying: microcapsule characterization and release kinetics of the oil. Food Hydrocoll. 2022;125:107430.

56.       Mu X-T, Ju X-J, Zhang L, Huang X-B, Faraj Y, Liu Z, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs. J Membr Sci. 2019;590:117275.

57.       Jiang Z, Zhao S, Yang M, Song M, Li J, Zheng J. Structurally stable sustained-release microcapsules stabilized by self-assembly of pectin-chitosan-collagen in aqueous two-phase system. Food Hydrocoll. 2022;125:107413.

58.       Ritger PL, Peppas N. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37-42.

59.       Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71.

Published
2022/12/29
Section
Review articles