Мatematičko modelovanje in vitro oslobađanja lekovitih supstanci iz nosača tipa polimernih mikročestica
Sažetak
Inkorporiranje aktivnih supstanci u nosače tipa polimernih mikročestica (mikroinkapsulacija) je značajna tehnološka strategija u farmaceutskoj industriji kojom se može postići poboljšanje kvaliteta, bezbednosti i/ili terapijske efikasnosti farmaceutskih preparata za različite puteve primene. U fokusu aktuelnih istraživanja je inkapsulacija malih molekula i makromolekula u mikročestice na bazi biokompatibilnih sintetskih polimera i biopolimera, kao što su polipeptidi i polisaharidi, u cilju postizanja željene kinetike oslobađanja aktivne supstance. Raznovrsnost u pogledu strukture i veličine mikročestica, izbora polimera i postupaka izrade, omogućava kreiranje mnoštva nosača na mikroskali (npr. monolitne matriksne mikrosfere, šuplje mikrokapsule, mikrokapsule sa vodenim ili uljanim jezgrom, stimulus-senzitivne mikrokapsule), pri čemu se može manipulisati njihovim uticajem na biofarmaceutski profil lekovitih supstanci. Dosadašnji rezultati ukazuju da je in vitro proučavanje kinetike oslobađanja aktivne supstance jedan od ključnih aspekata karakterizacije nosača tipa mikročestica, pri čemu primena matematičke analize profila oslobađanja predstavlja značajno oruđe za sagledavanje mehanizama procesa oslobađanja lekovite supstance iz nosača, kao i za procenu uticaja i optimizaciju formulacionih i procesnih parametara u postupku mikroinkapsulacije. U radu je dat pregled reprezentativnih studija u okviru kojih je vršeno matematičko modelovanje eksperimentalno dobijenih podataka tokom oslobađanja model supstanci različitih fizičko-hemijskih osobina iz mikročestica, ilustrovan je značaj navedenog pristupa u obradi podataka i ukazano na potencijalna ograničenja.
Reference
1. Lam PL, Gambari R. Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release. 2014;178:25-45.
2. Dai C, Wang B, Zhao H. Microencapsulation peptide and protein drugs delivery system. Colloids Surf B Biointerfaces. 2005;41(2-3):117-120.
3. Ma G. Microencapsulation of protein drugs for drug delivery: Strategy, preparation, and applications. J Control Release. 2014;193:324-340.
4. Desai S, Perkins J, Harrison BS, Sankar J. Understanding release kinetics of biopolymer drug delivery microcapsules for biomedical applications. Mater Sci Eng B Solid State Mater Adv Technol. 2010;168:127–131.
5. El Itawi H, Fadlallah S, Allais F, Perre P. Green assessment of polymer microparticles production processes: a critical review. Green Chem. 2022;24;4237-4269.
6. Bhujel R, Maharjan R, Kim NA, Jeong SH. Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol. 2021;64:102608
7. Craig M, Schuster E, Holmberg K. Biodegradable nanofilms on microcapsules for controlled release of drugs to infected chronic wounds. 5th International conference on Advanced Nano Materials. Materials Today: Proceedings. 2015;2:118-125.
8. Guo B, Zhu C, Huang Z, Yang R, Liu C. Microcapsules with slow-release characteristics prepared by soluble small molecular starch fractions through the spray drying method. Int J Biol Macromol. 2022;200:34-41.
9. Ćirić A, Medarević Đ, Čalija B, Dobričić V, Mitrić M, Djekic L. Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics. Int J Biol Macromol. 2020;148:942–55.
10. Ćirić A, Medarević Đ, Čalija B, Dobričić V, Rmandić M, Barudžija T, et al. Effect of ibuprofen entrapment procedure on physicochemical and controlled drug release performances of chitosan/xanthan gum polyelectrolyte complexes. Int J Biol Macromol. 2021;167:547–58.
11. Ćirić A, Milinković-Budinčić J, Medarević Đ, Dobričić V, Rmandić M, Barudžija T, et al. Influence of spray-drying process on properties of chitosan/xanthan gum polyelectrolyte complexes as carriers for oral delivery of ibuprofen. Arh Farm (Belgr). 2022;72(1):36–60.
12. Wang C, Ye W, Zheng Y, Liu X, Tong Z. Fabrication of drug-loaded biodegradable microcapsules for controlled release by combination of solvent evaporation and layer-by-layer self-assembly. Int J Pharm. 2007;338:165-173.
13. Heidari S, Akhlaghi M, Sadeghi M, Kheirabadi AM, Beiki D, Ardekani AE, et al. Development of 64Cu-DOX/DOX-loaded chitosan-BSA multilayered hollow microcapsules for selective lung drug delivery. J Drug Deliv Sci Technol. 2022;73:103477.
14. Li Z, Du X, Cui X, Wang Z. Ultrasonic-assisted fabrication and release kinetics of two model redoxresponsive magnetic microcapsules for hydrophobic drug delivery. Ultrason Sonochem. 2019;57:223-232.
15. Mackiewicz M, Romanski J, Drabczyk K, Waleka E, Stojek Z, Karbarz M. Degradable, thermo-, pH- and redox-sensitive hydrogel microcapsules for burst and sustained release of drugs. Int J Pharm. 2019;569:118589.
16. Cui X, Guan X, Zhong S, Chen J, Zhu H, Li Z, et al. Multi-stimuli Responsive Smart Chitosan-based Microcapsules for Targeted Drug Delivery and Triggered Drug Release. Ultrason Sonochem. 2017;38:145-153.
17. Shi C, Zhong S, Sun Y, Xu L, He S, Dou Y, et al. Sonochemical preparation of folic acid-decorated reductive-responsive εpoly-L-lysine-based microcapsules for targeted drug delivery and reductive-triggered release. Mater Sci Eng C. 2020;106:110251.
18. Wang A, Tao C, Cui Y, Duan L, Yang Y, Li J. Assembly of environmental sensitive microcapsules of PNIPAAm and alginate acid and their application in drug release. J Colloid Interface Sci. 2009;332:271-279.
19. Niu Y, Stadler FJ, Song J, Chen S, Chen S. Facile fabrication of polyurethane microcapsules carriers for tracing cellular internalization and intracellular pH-triggered drug release. Colloids Surf B Biointerfaces. 2017;153:160-167.
20. Zhao Q, Li B. pH-controlled drug loading and release from biodegradable microcapsules. Nanomed: Nanotechnol Biol Med. 2008;4:302-310.
21. Čalija B, Cekić N, Savić S, Daniels R, Marković B, Milić J. pH-sensitive microparticles for oral drug delivery based on alginate/oligochitosan/Eudragit® L100-55 "sandwich" polyelectrolyte complex. Colloids Surf B Biointerfaces. 2013;110:395-402.
22. Samanta MS, Gautam D, Chandel MW, Sawant G, Sharma K. A review on microspheres as a novel controlled drug delivery system. Asian J Pharm Clin Res. 2021;14(4):3–11.
23. Bidkar S, Maniyar S, Bidkar J, Mantry S, Dama G. A Simplified Review on Microsphere and Their Different Applications. J Pharm Res Int. 2022;34:24–36.
24. Raj H, Sharma S, Sharma A, Verma KK, Chaudhary A. A Novel Drug Delivery System: Review on Microspheres. J Drug Deliv Ther. 2021;11(2-S):156–61.
25. Zhang M, Yang Z, Chow L-L, Wang C-H. Simulation of drug release from biodegradable polymeric microspheres with bulk and surface erosions. J Pharm Sci. 2003;92(10):2040-56.
26. Harland RS, Dubernet C, Nikolaos J-PB, Peppas NA. A model of dissolution-controlled, diffusional drug release from non-swellable polymeric microspheres. J Control Release. 1988;7(3):207-15.
27. Abadi SSH, Gangadharappa HV, Balamuralidhara V. Development of colon-specific mucoadhesive meloxicam microspheres for the treatment of CFA-induced arthritis in rats. Int J Polym Mater Polym Biomater. 2021;70(12):849–69.
28. Sharma N, Deshpande RD, Sharma D, Sharma RK. Development of locust bean gum and xanthan gum based biodegradable microparticles of celecoxib using a central composite design and its evaluation. Ind Crops Prod. 2016;82:161–70.
29. Cho AR, Chun YG, Kim BK, Park DJ. Preparation of alginate-CaCl2 microspheres as resveratrol carriers. J Mater Sci. 2014;49(13):4612–9.
30. Sharma VK, Sharma PP, Mazumder B, Bhatnagar A, Subramaniyan V, Fuloria S, et al. Mucoadhesive microspheres of glutaraldehyde crosslinked mucilage of Isabgol husk for sustained release of gliclazide. J Biomater Sci Polym Ed. 2021;32(11):1420–49.
31. Outuki PM, de Francisco LMB, Hoscheid J, Bonifácio KL, Barbosa DS, Cardoso MLC. Development of arabic and xanthan gum microparticles loaded with an extract of Eschweilera nana Miers leaves with antioxidant capacity. Colloids Surfaces A Physicochem Eng Asp. 2016;499:103–12.
32. Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B, et al. Novel interpenetrating network microspheres of xanthan gumpoly(vinyl alcohol) for the delivery of diclofenac sodium to the intestine in vitro and in vivo evaluation. Drug Deliv. 2010;17(7):508–19.
33. Ray S, Banerjee S, Maiti S, Laha B, Barik S, Sa B, et al. Novel interpenetrating network microspheres of xanthan gumpoly(vinyl alcohol) for the delivery of diclofenac sodium to the intestinein vitro and in vivo evaluation. Drug Deliv. 2010;17(7):508–19.
34. Desai KGH, Park HJ. Preparation of cross-linked chitosan microspheres by spray drying: Effect of cross-linking agent on the properties of spray dried microspheres. J Microencapsul. 2005;22(4):377–95.
35. Bhattacharya SS, Mazahir F, Banerjee S, Verma A, Ghosh A. Preparation and in vitro evaluation of xanthan gum facilitated superabsorbent polymeric microspheres. Carbohydr Polym. 2013;98(1):64–72.
36. Ćirić A, Budinčić JM, Medarević Đ, Dobričić V, Rmandić M, Barudžija T, et al. Evaluation of chitosan/xanthan gum polyelectrolyte complexes potential for pH-dependent oral delivery of escin. Int J Biol Macromol. 2022;221:48–60.
37. Mahajan HS, Gattani SG. Gellan gum based microparticles of metoclopromide hydrochloride for intranasal delivery: Development and evaluation. Chem Pharm Bull. 2009;57(4):388–92.
38. Addo RT, Yeboah KG, Siwale RC, Siddig A, Jones A, Ubale RV, et al. Formulation and characterization of atropine sulfate in albumin-chitosan microparticles for in vivo ocular drug delivery. J Pharm Sci. 2015;104(5):1677–90.
39. Dimer FA, Ortiz M, Pohlmann AR, Guterres SS. Inhalable resveratrol microparticles produced by vibrational atomization spray drying for treating pulmonary arterial hypertension. J Drug Deliv Sci Technol. 2015;29:152–8.
40. Carr E, Pontrelli G. Drug delivery from microcapsules: How can we estimate the release time? Math Biosci. 2019; 315:108216.
41. Song X-C, Yu Y-L, Yang G-Y, Jiang A-L, Ruan Y, Fan S. One-step emulsification for controllable preparation of ethyl cellulose microcapsules and their sustained release performance. Colloids Surf B Biointerfaces. 2022;213:112560.
42. Zhang F, Wu Q, Chen Z-C, Zhang M, Lin X-F. Hepatic-targeting microcapsules construction by self-assembly of bioactive galactose-branched polyelectrolyte for controlled drug release system. J Colloid Interface Sci. 2008;317:477–484.
43. Luo Z, Zhao G, Panhwar F, Akbar MF, Shu Z. Well-designed microcapsules fabricated using droplet-based microfluidic technique for controlled drug release. J Drug Deliv Sci Technol. 2017;39:379–384.
44. Huo W, Zhang W, Wang W, Zhou X. Physicochemical properties and drug release behavior of biguanidino and O-carboxymethyl chitosan microcapsules. Int J Biol Macromol. 2014;70:257-265.
45. Sua T, Wua Q-X, Chen Y, Zhao J, Cheng X-D, Chen J. Fabrication of the polyphosphates patched cellulose sulfate-chitosan hydrochloride microcapsules and as vehicles for sustained drug release. Int J Pharm. 2019;555:291–302.
46. Abuhamdan RM, Al-Anati BH, Al Thaher Y, Shraideh ZA, Alkawareek MY, Abulateefeh SR. Aqueous core microcapsules as potential long-acting release systems for hydrophilic drugs. Int J Pharm. 2021;606:120926.
47. Abulateefeh SR, Alkawareek MY, Alkilany AM. Tunable sustained release drug delivery system based on mononuclear aqueous core-polymer shell microcapsules. Int J Pharm. 2019;558:291–298.
48. 47. Abulateefeh SR, Alkilany AM. Synthesis and Characterization of PLGA Shell Microcapsules Containing Aqueous Cores Prepared by Internal Phase Separation. AAPS PharmSciTech. 2016;17(4):891-897.
49. Siegel RA, Rathborne MJ. Overview of Controlled Release Mechanisms. In: Siepmann J, Siegel RA, Rathborne MJ, editors. Fundamentals and Applications of Controlled Release Drug Delivery. New York: Springer; 2012; pp. 19-43.
50. Husmann M, Schenderlein S, Luck M, Lindner H. Polymer erosion in PLGA microparticles produced by phase separation method. Int J Pharm. 2002;242(1-2):277-280.
51. Kupikowska-Stobba B, Grzeczkowicz M, Lewinska D. A one-step in vitro continuous flow assessment of protein release from core-shell polymer microcapsules designed for therapeutic protein delivery. Biocybern Biomed Eng. 2021;41:1347-1364.
52. Li C, Fang K, He W, Li K, Jiang Y, Li J. Evaluation of chitosan-ferulic acid microcapsules for sustained drug delivery: Synthesis, characterizations, and release kinetics in vitro. J Mol Struct. 2021;1227:129353.
53. Milinković Budinčić J, Petrović L, Ðekić Lj, Fraj J, Bučko S, Katona J, et al. Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydr Polym. 2021;251:116988.
54. Milinković Budinčić J, Petrović L, Ðekić Lj, Aleksić M, Fraj J, Popović S, et al. Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile-Understanding the Effect of Anionic Surfactant. Pharmaceuticals. 2022;15:54.
55. Bajac J, Nikolovski B, Lončarević I, Petrović J, Bajac B, Đurović S, et al. Microencapsulation of juniper berry essential oil (Juniperus communis L.) by spray drying: microcapsule characterization and release kinetics of the oil. Food Hydrocoll. 2022;125:107430.
56. Mu X-T, Ju X-J, Zhang L, Huang X-B, Faraj Y, Liu Z, et al. Chitosan microcapsule membranes with nanoscale thickness for controlled release of drugs. J Membr Sci. 2019;590:117275.
57. Jiang Z, Zhao S, Yang M, Song M, Li J, Zheng J. Structurally stable sustained-release microcapsules stabilized by self-assembly of pectin-chitosan-collagen in aqueous two-phase system. Food Hydrocoll. 2022;125:107413.
58. Ritger PL, Peppas N. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37-42.
59. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71.
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga "Creative Commons Attribution licencom" koja omogućava drugima da dele rad, uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju članka objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je članak izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni članak onlajn (npr. u institucionalni repozitorijum ili na svoju internet stranicu) pre ili tokom postupka prijave rukopisa, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog članka (Vidi Efekti otvorenog pristupa).