Upotreba simulatora kompaktiranja za karakterizaciju kompresije praškova – prednosti i ograničenja
Sažetak
Simulatori kompaktiranja su uređaji dizajnirani da omoguće dublju analizu procesa komprimovanja praškova. Karakterizacija procesa kompresije i kompakcije praškova, kao i karakterizacija materijala, ima važnu ulogu u dizajnu i razvoju formulacije i proizvodnog procesa tableta, kao i za kreiranje snažne baze za transfer proizvodnog procesa komprimovanja tableta na proizvodnu opremu i rešavanje problema u proizvodnim procesima u kasnijim fazama životnog ciklusa proizvoda. Iako su simulatori kompaktiranja dizajnirani da simuliraju proces kompresije na tablet-presama visoke brzine, obezbeđujući prednost korišćenja manjih količina materijala i visoko sofisticirane instrumentacije, postoje određena ograničenja u ekstrapolaciji procesnih parametara sa ovih mašina na tablet-prese visokih brzina. Međutim, prednosti upotrebe simulatora kompaktiranja za proučavanje osnovnih mehanizama kompresije i kompaktiranja, identifikaciju kritičnih karakteristika materijala i opsega kritičnih procesnih parametara, kao i njihovih relacija sa karakteristikama tableta, i kritičnim karakteristikama farmaceutskih proizvoda su očigledne, u poređenju sa korišćenjem malih ekscenter tablet presa, i komplementarne sa upotrebom manjih rotacionih tablet presa. U ovom radu je prikazan pregled i primeri različitih prednosti omogućenih nivoom instrumentacije simulatora kompaktiranja, uključujući i ograničenja u njihovoj eksploataciji.
Reference
1. Tableting specification manual. 7th ed, American Pharmacists Association, 2006.
2. Natoli D, Levin M, Tsygan L, Liu L. Development, optimization and scale-up of process parameters: tablet compression. In: Qiu Y, Chen Y, Zhang G. 1st edition,
Developing Solid Oral Dosage Forms pharmaceutical theory and practice. Academic press Elsevier: 2009; p. 725-760
3. Hiestand EN. Principles, tenets and notions of tablet bonding and measurements of strength. Eur J Pharm Biopharm. 1997;44:229–242.
4. Van der Voort Maarschalk K. Tablet relaxation, origin and consequences of stress relief in tablet formation [dissertation]. [Groningen]: Riksuniversiteit Groningen; 1997. 141 p.
5. Muñoz-Ruiz A, Jimenez-Castellanos MR, Cunningham JC, Katdare AV. Theoretical estimation of dwell and consolidation times in rotary tablet machines. Drug Dev Ind Pharm. 1992;18(9):2011–28.
6. Çelik M, Marshall K. Use of a compaction simulator system in tableting research. Drug Dev Ind Pharm. 1989;15(5):759–800.
7. Bateman SD. A comparative investigation of compression simulators. Int J Pharm. 1989;49:209–212.
8. Rubinstein MH. Compaction properties of a cellulose – lactose direct-compression excipient. Pharm Tech. 1991;4:76–80.
9. Celik M, Ong JTH, Chowhan ZT, Samuel GJ. Compaction simulator studies of a new drug substance: effect of particle size and shape, and its binary mixtures with microcrystalline cellulose. Pharm Dev Tech. 1996;1:119–126.
10. Nokhodchi A, Rubinstein MH. Compaction simulators in tableting research. Pharm Tech Suppl – Tab Gran Yearbook. 1996;6:18.
11. Tardy G. Analis SoftwareTM User guide of software Analis, Rev. B. Medelpharm 2012.
12. Levin M. Tablet press instrumentation. New York, USA: Marcel Dekker; 2002.
13. Von Schmidt PC, Tenter U. Displacement Measurements of Rotary Presses. Pharm Ind. 1985;47:426–430.
14. Nikolic N. Application of quality by design concept for identification, qualification and modeling of critical quality attributes of modified release tramadol-hydrochloride matrix tablets [dissertation]. [Belgrade]: University in Belgrade; 2015.
15. Mazel V, Desbois L, Tchoreloff P. Influence of the unloading conditions on capping and lamination: Study on a compaction simulator, Int J Pharm. 2019;567:118468.
16. Tye CK, Sun CC, Amidon GE. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J Pharm Sci. 2005;94(3):465–472.
17. Çelik M. Pharmaceutical powder compaction technology. Florida, USA: CRC Press; 2016.
18. Busignies V, Mazel V, Diarra H, Tchoreloff P. Prediction of the compressibility of complex mixtures of pharmaceutical powders. Int J Pharm. 2012;436(1-2):862-8.
19. Michaut F, Busignies V, Fouquereau C, Barochez BHD, Leclerc B, Tchorelo P. Evaluation of a rotary tablet press simulator as a tool for the characterization of compaction properties of pharmaceutical products. J Pharm Sci. 2010;99:2874–2885.
20. Picker KM. A new theoretical model to characterize the densification behavior of tableting materials. Eur J Pharm Biopharm. 2000;49(3):267–273.
21. Heckel RW. Density – pressure relationships in powder compaction. Trans Metall Soc AIME. 1961;221:671–675.
22. Ruegger CE, Celik M, Advanced compaction research equipment: compaction simulators. In: Celik M, 2nd edition, Pharmaceutical Powder Compaction Technology, CRC Press, p. 99–128.
23. Ozalp Y, Chunu JT, Jiwa N. Investigation of the compressibility characteristics of paracetamol using "compaction simulator". Turk J Pharm Sci. 2020;17(3):249-254.
24. Ilić I, Govedarica B, Šibanc R, Dreu R, Srčič S. Deformation properties of pharmaceutical excipients determined using an in-die and out-die method. Int J Pharm. 2013;446:6–15.
25. Sun C, Grant DJ. Influence of elastic deformation of particles on Heckel analysis. Pharm Dev Technol. 2001;6(2):193–200.
26. Amidon GE, Secreast PJ, Mudie D. Particle, Powder, and Compact Characterization In: Qiu Y, Chen Y, Zhang G. 1st edition,
Developing Solid Oral Dosage Forms pharmaceutical theory and practice. Academic press Elsevier: 2009; p. 163-186
27. Imayoshi Y, Ohsaki S, Nakamura H, Watano S. Continuous measurement of die wall pressure in a rotary tablet machine. Int J Pharm. 2022;627(11):122251.
28. Abdel-Hamid S, Betz G. Investigating the effect of punch geometry on high speed tableting through radial die-wall pressure monitoring. Pharm Dev Technol. 2013;18(1):46-54.
29. Guntermann A. Untersuchung der Tablettier Simulation mit dem PressterTM in Abhängigkeit von der Formulierung, Chargengrösse und der Tablettenpresse [dissertation]. [Basel]: University of Basel; 2008.
30. Thorsten N. Investigation and optimization of the Presster – a linear compaction simulator for rotary tablet presses [dissertation]. [Bonn]: University of Bonn; 2007.
31. Wünsch I, Friesen I, Puckhaber D, Schlegel T, Finke JH. Scaling tableting processes from compaction simulator to rotary presses - mind the sub-processes. Pharmaceutics. 2020;12:310.
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga "Creative Commons Attribution licencom" koja omogućava drugima da dele rad, uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju članka objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je članak izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni članak onlajn (npr. u institucionalni repozitorijum ili na svoju internet stranicu) pre ili tokom postupka prijave rukopisa, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog članka (Vidi Efekti otvorenog pristupa).