TRANSFERENCE OF METALS IN SOME NATIVE WETLAND SPECIES GROWING ON CRUDE OIL IMPACTED SOILS IN THE NIGER-DELTA, NIGERIA: IMPLICATIONS FOR PHYTOREMEDIATION POTENTIALS

  • Ogunkunle O Clement Department of Plant Biology University of Ilorin Nigeria
  • Folarin O Olamide Department of Plant Biology University of Ilorin Nigeria
  • Olorunmiaye K Stephen Department of Plant Biology University of Ilorin Nigeria
  • Varun Mayank Department of Botany, St. John’s College, Agra-282002, India.
  • Paul O Fatoba Department of Plant Biology University of Ilorin Nigeria

Sažetak


In this study, wetland species growing naturally in the surrounding of two crude oil facilities were sampled and screened for phytoremediation potentials for zinc, lead, nickel, chromium and cadmium. Concentrations of metals in the root and shoot samples of the wetland species alongside the rhizosphere soil were determined. Metal accumulation in wetland species exceeded the permissible limits but still within phytotoxic thresholds except chromium. The use of bio-concentration factor and transfer factor to screen the wetland species for phytoremediation potentials identified six out of the eight studied species as multi-elemental phytostabilizers of metals in soil. In addition, five of the eight wetland species displayed potentials for phytoextraction of metal, though there was no multi-elemental phytoextractor among the wetland species. Paspalum vaginatum, Andropogon tectorum and Kyllinga squamata portend potential abilities to phytoextract nickel. In addition, Setaria longiseta and Pteridium aquilinum also showed strong potential to phytoextract lead and cadmium respectively from soil. This screening assessment is hoped to be useful in the applications of cost-effective green technology to remediate heavy metals in contaminated soil

Biografije autora

Ogunkunle O Clement, Department of Plant Biology University of Ilorin Nigeria

Department of Plant Biology

University of Ilorin

Nigeria

Folarin O Olamide, Department of Plant Biology University of Ilorin Nigeria

Department of Plant Biology

University of Ilorin

Nigeria

Olorunmiaye K Stephen, Department of Plant Biology University of Ilorin Nigeria

Department of Plant Biology

University of Ilorin

Nigeria

Varun Mayank, Department of Botany, St. John’s College, Agra-282002, India.

Department of Botany,

St. John’s College,

Agra-282002, India.

Paul O Fatoba, Department of Plant Biology University of Ilorin Nigeria

Department of Plant Biology

University of Ilorin

Nigeria

Reference

--

Alloway, B.J., Jackson, A.P., & Morgan, H. (1990). The accumulation of cadmium by vegetables grown on soils contaminated from a variety of sources. Science of the Total Environment, 91, 223-236.

Antonsiewicz, D.M., Escude-Duran, C., Eierzbowska, E., & Sklodowska, A. (2008). Indigenous plant species with potential for the phytoremediation of arsenic and metal contaminated soil. Water, Air and Soil Pollution, 19, 197-210

Ashraf, M. A., Maah, M. J., & Yusoff, I. (2011). Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Science and Technology, 8(2), 401-416

Baker, A.J.M. (1981). Accumulators and Excluders-Strategies in the response of Plants to Heavy Metals. Journal of Plant Nutrition, 3(1-4), 643-654.

Baker, A.J.M., Reeves, R.D., & McGrath, S.P. (1991). In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants- a feasibility study. In R.E. Hinchee and R.F. Olfenbuttel (Eds), In Situ Bioreclamation, (Pp. 539-544), MA: Butterworth-Heinemann, Stoneham.

Baker, A.J.M., Reeves, R.D., & Hajar, A.S.M. (1994). Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytologist, 127, 61–68

Baker, A.J.M., & Whiting, S.N. (2002). In search of the Holy Grail: a further step in understanding metal hyperaccumulation? New Phytologist, 155, 1-7.

Baumann, A. (1885). Das Verhalten von Zinksatzen gegen Pflanzen und im Boden. Landwirtsch. Vers.-Statn, 31, 1-53.

Becerra-Castro, C., Monterroso, C., Prieto-Fernández, A., Rodríguez-Lamas, L., Loureiro-Brunetti, G., Soler-Rovira, P., Farrag, K., & Senesi, N. (2009). Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil, 318, 285-298.

Canadian Council of Ministers of the Environment (CCME) (2007). Canadian soil quality guidelines for the protection of environmental and human health: summary tables. Canadian Council of Ministers of the Environment, Winnipeg. Excerpt from Publication No. 1299, ISBN 1-896997-34-1.

Chaney, R.L. (1983). Plant uptake of inorganic waste. In J.E. Parr, P.B. Marsh & J.M. Kla (Eds), Land Treatment of Hazardous Waste. (pp 50-76) Illinois: Noyes Data Corp, Park Ridge.

Codex Alimentarius (2001). Codex maximum levels for Cadmium in Cereals, Pulses and Legumes, Joint FAO/WHO Standards, CAC/GL 39- 2001.

Concas, S., Lattanzi, P., Bacchetta, G., Barvafieri, M., & Vacca, A. (2015). Zn, Pb and Hg contents of Pisacia lentiscus L. grown on heavy metal-rich soils: Implications for phytostabilization. Water Air Soil Pollution, 226-doi-10.1007/s11270-015-2609-x

Dickson, U.J., & Udoessien, E.I. (2012). Physicochemical studies of Nigeria’s crude oil blends. Pet Coal, 54(3), 243-251

D’Souza, R., Varun, M., Masih, J., & Paul, M.S. (2010). Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metals from contaminated soils in Urban North Central India. Journal of Hazardous Materials, 184, 457-464

D’Souza, R., Varun, M., Pratas, J., & Paul, M.S. (2012). Spatial distribution of heavy metals in soil and flora associated with the glass industry in north-central India: implications for phytoremediation. Soil and Sediment Contamination. http://dx.doi.org/10.1080/15320383.2012.697936

FAO/WHO (1996). Permissible limit of heavy metals in soil and plants. WHO, Geneva, Switzerland

Fatoba, P. O., Ogunkunle, C. O., Folarin, O. O., & Oladele, F. A. (2016). Heavy metal pollution and ecological geochemistry of soil impacted by activities of oil industry in the Niger Delta, Nigeria. Environmental Earth Science, 75(4), 1-9. Doi: 10.1007/s12665-015-5145-5

Fellet, G., Marchiol, L., Perosa, D., & Zerbia, G. (2007). The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecological Engineering, 31, 207-214.

Fitz, W.J., & Wenzel, W.W. (2002). Arsenic transformation in the soil-rhizosphere-plant system, fundamentals and potential application of phytoremediation. J Biotechnol, 99, 259–278

Garba, S.T., Nkafaminya, I.I., & Barminas, J.T. (2013). Phytoremediation: Influence of different level of EDTA on the phytoextraction ability of Pennisetum pedicellatum for the metals; cadmium and zinc. International Journal of Engineering and Management Sciences, 4(2), 92-97

Jiménez, M. N., Bacchetta, G., Casti, M., Navarro, F. B., Lallena, A. M., & Fernández-Ondoño, E. (2011). Potential use in phytoremediation of three plant species growing on contaminated mine-tailing soils in Sardinia. Ecological Engineering, 37, 392-398.

Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants, fourth ed. CRC Publishing Press, Boca Raton, Florida.

Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. 3rd edition. CRC Press, Boca Raton, Florida, 413 pp.

Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. 2nd edition, CRC Publishing press. Boca Raton, Florida. 365p

Kabata-Pendias, A., & Pendias, H. (1984). Trace elements in soils and plants. CRC Publishing press. Boca Raton, Florida

Kachenko, A.G., Singh, B., & Bhatia, N.P. (2007). Heavy metal tolerance in common fern species. Australian Journal of Botany, 55, 63-73

Kubicka, K., Samecka-Cymerman, A., Kolo, K., & Kempers, A. J. (2015). Chromium and nickel in Pteridium aquilinum from environments with various levels of these metals. Environmental Science and Pollution Research, 22, 527-534

Kuper, H., Lombi, E., Zhao, F. J., & McGrath, S. P. (2000). Cellular compartmentation of cadmium and zinc in relation to other elements in hyperaccumulator Arabdiopsis halleri, Planta, 212, 75-84

Kupper, J., & Kroneck, P.M.H. (2005). Heavy metal uptake by plants and cyanobacteria. In: A. Sigel, H. Sigel & R.K.O. Sigel (Eds.), Metal ions in biological systems. (PP. 97-142). New York: Marcel Dekker, Inc.

Lasat, M.M. (2000). Phytoextraction of metals from contaminated soil: A review of plant/soil/metal interaction and assessment of pertinent Agronomic issues. Journal of Hazardous Substance Research, 2(5), 1-25

Lindsay, W. L. (1979). Chemical equilibria in soils. New York: John Wiley and Sons.

Liphadzi, M.S., & Kirkham, M.B. (2005). Phytoremediation of soil contaminated with heavy metals: A technology for rehabilitation of the environment. South African Journal of Botany, 71(1), 24–37.

Ma, L.Q., Komar, K.M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E.D. (2001). A fern that hyperaccumulates arsenic. Nature doi-1038/35054664

Mendez, M.O., & Maier, R.M. (2008). Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect, 116, 278-283.

Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Olivero-Verbel, J., & Díez, S. (2015). Phytoremediation of mercury-contaminated soils byJatropha curcas. Chemosphere, 127, 58-63

Nouri, J., Khorasani, N., Lorestani, B., Karami, M., Hassani, A.H., & Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environmental Earth Science, 59, 315-323.

Ogunkunle, C. O., Fatoba, P. O., Oyedeji, A. O., & Awotoye, O. O. (2013). Assessing the heavy metal transfer and translocation by Sida acuta and Pennisetum purpureum for phytoremediation purposes. Albanian Journal of Agricultural Science, 13(1), 71-80

Pratas, J., Favas, P.J.C., D’Souza, R., Varun, M., & Paul, M.S. (2013). Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Chemosphere, 90, 2216-2225.

Quintela-Sabarís, C., Ribeiro, M.M., Poncet, B., Costa, R., Castro-Fernández, D., & Fraga, M.I. (2012). AFLP analysis of the pseudometallophyte Cistus ladanifer: comparison with cpSSRs and exploratory genome scan to investigate loci associated to soil variables. Plant and Soil, 359, 397-413.

Salt, D.E., Blaylock, M., Kumar, N.P.B., Viatcheslav, D., & Ensley, B.D. (1995). Phytoremediation a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468-474

Salt, D.E., & Krämer, U. (2000), Mechanisms of metal hyperaccumulation in plants. In: I. Raskin, I. & B. D. Ensley (Eds.), Phytoremediation of Toxic Metals. (pp. 231-246). New York: John Wiley and Sons, Inc.

Samecka-Cymerman A., Kolon, K., Stankiewicz, A., Mróz, L., & Kempers, A.J. (2012). Bioindicative comparison of the f,ern Athyrium distentifolium for trace pollution in the Sudety and Tatra mountains of Poland. Environmental Monitoring and Assessment, 184, 6357-6365. doi: 10.1007/s10661-011-2425-8

Santillan, L. F. J., Constantino, C. A. L., Rodriguez, G. A. V., Ubilla, N. M. C., & Hernandez, R. I. B. (2010). Manganese accumulation in plants of the mining zone of Hidalgo, Mexico. Bioresource Technology 101 (15): 5836-5841.

Secu, C.V., Iancu, O.G., & Buzgar, N. (2008). Lead, zinc and copper in the bioaccumulative horizon of soils from Lasi and the surrounding areas. Carpathian Journal of Earth and Environmental Sciences, 3(2), 131-144.

Uraguchi, S., Watanabe, I., Yoshitomi, A., Kiyono, M., & Kuno, K. (2006). Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. Journal of Experimental Botany, 57(12), 2955-2965

Uraguchi, S., Mori, S., Kalamata, M., Kawasaki, A., Arao, T., & Ishikawa, S. (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 60, 2677-2688

USEPA (1996). Acid Digestion of Sludges, Solids and Soils USEPA 3050B. SW-846 Pt 1 Office of Solid and Hazardous Wastes, USEPA, OH: Cincinnati.

Varun, M., D’Souza, R., Kumar, D., & Paul, M.S. (2011). Bioassay asmonitoring system for lead phytoremediation through Crinum asiaticum L. Environmental Monitoring & Assessment, 178, 373-381

Varun, M., D’Souza, R., Pratas, J., & Paul, M.S. (2012). Metal contamination of soils and plants associated with the glass industry in north-central India: prospects of phytoremediation. Environmental Science and Pollution Research, 19, 269-281.

Varun, M., Jaggi, D., D’Souza, R., & Paul, M. S. (2015). Abutilon indicum L.: a prospective weed for phytoremediation. Environmental Monitoring & Assessment, 187, DOI: 10.1007/s10661-015-4748-3. http://www.researchgate.net/publication/280536767

Weis, S.J., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environmental International, 30, 685-700

Xu, S., & Tao, S. (2004). Co-regionalization analysis of heavy metals in the surface soil of Inner Mongolia. Science of the Total Environment, 320, 73-87

Yang, B., Shu, W, Ye, Z., Lan, C., & Wong, M. (2003). Growth and metal accumulation in Vetiver and two Sebania species on Lead/Zinc mine tailings. Chemosphere, 52, 1593-1600

Yoon, J., Cao, X., Zhou, Q., & Ma, L.Q. (2006). Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456-464

Zayed, A., & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant Soil, 249,139-56

Zhang, Z., Sugawara, K., Hatayama, M., Huang, Y., & Inoue, C. (2013). Screening of As-accumulating plants using a foliar application and a native accumulation of As. International Journal of Phytoremediation, doi:10.1080/15226514.2013.773277

--

Objavljeno
2016/07/08
Rubrika
Originalni naučni članak