EFFECTS OF ARBUSCULAR MYCORRHIZA FUNGAL TREATMENT ON INDIGENOUS MICROBIAL COMPOSITION IN THE RHIZOSPHERE OF SELECTED RICE VARIETIES
Sažetak
Plant growth can be stimulated by symbiotic relationship between arbuscular mycorrhiza fungi (AMF) and bacteria within the rhizosphere region. These interactions are highly crucial for soil fertility increased productivity and sustainability, as well as food security considering high level of malnutrition. Six rice varieties grown with (M+) or without (M-) AMF inoculation in a randomized complete block design with three replicates. The soil physic-chemical properties were determined using standard procedures, bacteria were isolated from the soil samples and the colony count was determined during the early and late cropping season of rice. Specific soil properties (phosphate, pH, organic matter) increased dramatically in presence of AMF which led to significant rice yield in both seasons. Bacterial species isolated include Lactobacillus spp., Klebsiella aerogenes, Bacillus subtilis, Escherichia coli, Pseudomonas fluorescens, Azospirillum brasilense, Bacillus subtilis, Staphylococcus aureus, Enterobacter cloaca, and Micrococcus sp. Rice exudates increased bacteria population in early season, whilst AMF treatment increased bacteria population in late season and generally increased the bacteria species richness in the both seasons. Although the actual mechanism that increased the bacteria species richness was not accessed, this study however showed that such increase in specific AMF-bacteria interaction increase and sustains soil fertility which also increases rice yield. Further study is necessary to determine the mechanism of interaction observed between AMF inoculation and bacterial population.
Reference
Abd-Alla, M.H., El-Enany, A.W.E., Nafady, N.A., Khalaf, D.M., Morsy, F.M.. (2014). Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol. Res. 169, 49-58.
Abdel-Latef, A.A.H., Chaoxing, H. (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae 127, 228–233.
Adesemoye, A.O., Torbert, H.A., Kloepper, J.W. (2008). Enhanced plant nutrient use efficiency
Artursson, V., Finlay, R.D., Jansson, J.K. (2006). Interactions between arbuscular mycorrhizal
Bacilio-Jiménez, M., Aguilar-Flores,S., Ventura-Zapata, E., Pérez-Campos, E., Boquelat, S.,
Barea, J.M., Andrade, G., Bianciotto, V.V., Dowling, D., Lohrke, S., Bonfante, P. (1998). Impact
Barrow, G.I. (2003). Cowan and Steel's manual for the identification of medical bacteria. Third
Baudoin, E., Benizri, E., Guckert, A. (2003). Impact of artificial root exudates on the bacterial
Balasubramanian, V., Sie, M., Hijmans, R.J., Otsuka, K. (2007). Increasing Rice Production in
Bianciotto, V., Minerdi, D., Perotto, S., Bonfante, P. (1996). Cellular interactions between
Biró, B., Köves-Péchy, K., Vörös, I., Takács, T., Eggenberger, P., Strasser, R.J. (2000).
Bohrer, G., Kagan-Zur, V., Roth-Bejerano, N., Ward, D., Beck, G., Bonifacio, E. (2003). Effects
Bremner, J.M. (1960). Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci.
Brundrett, M. (2004). Diversity and classification of mycorrhizal associations. Biol. Rev. 79,473-
Carreón-Abud, Y., Soriano-Bello, E., Martínez-Trujillo, M. (2007). Role of arbuscular
Chen, D., Wang, G.L., Ronald, P.C. (1997). Location of the rice blast resistance locus Pi5 (t) in
Cheng, L., Booker, F.L., Tu, C., Burkey, K.O., Zhou, L., Shew, H.D., Rufty, T.W., Hu, S.
Clark, R.B, Zeto, S.K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. J. Plant
Food and Agriculture Organisation of the United Nations Statistics Division (FAOSTAT). World
Fernández, F., Ortiz, R., Martínez, R.A., Costales, A., Llonin, D. (1997). The effect of
Ghazi N. Al-Karaki. (2006). Nursery inoculation of tomato with arbuscular mycorrhizal fungi
Habte, H., Soedarjo, M. (1996). Response of Acacia mangium to vesicular – arbuscular
Halder, M., Dhar, P.P., Mujib, A.S.M., Khan, M.S., Joardar, J.C., Akhter, S. (2015). Effect of
Hamel, C. (2004). Impact of arbuscular mycorrhizal fungi on N and P cycling in the root zone.
Jha, B., Thakur, M.C., Gontia, I., Albrecht, V., Stoffels, M., Schmid, M., Hartmann, A. (2009).
Jonker, E.J., van Aarle, I.M., Vosatka, M. (2000). Phosphatase activity of extra-radical
Kaya, C., Ashraf, M., Sonmez, O., Aydemir, S., Tuna, A.L., Cullu, M.A. (2009). The influence
Kennedy A.C., De Luna L.Z. (2004). Rhizosphere. In: Encyclopedia of soils in the environment
Khan, M.S., Zaidi, A. (2007). Synergistic effects of the inoculation with plant growth-promoting
Kögel-Knabner I. (2002). The macromolecular organic composition of plant and microbial
Koide, R.T., Kabir, Z. (2000). Extraradical hyphae of the mycorrhizal fungus Glomus
Livingston, G., Schonberger, S., Delaney, S. (2011). Sub-Saharan Africa: The state of
Mäder, P., Kaiser, F., Adholeya, A., Singh, R., Uppal, H.S., Sharma, A. K., Srivastava, R., Sahai,
Manoharan, V.T. (1997). Impacts of phosphate fertiliser on soil acidity and aluminium
Marschner, P., Baumann, K. (2003). Changes in bacterial community structure induced by
Marschner, P., Timonen, S. (2005). Interactions between plant speciess and mycorrhizal
Mohamed, A.A., Eweda, W.E.E., Heggo, A.M., Hassan, E.A. (2014). Effect of dual inoculation
Pellegrino, E., Ӧpik, M., Bonari, E., Ercoli, L. (2015). Responses of wheat to arbuscular
Rillig, MC. (2004). Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol. Lett. 7,
SAS, Institute. (2001). SAS Technical Report. SAS/STAT software: Changes and Enhancements.
Sakariyawo, O.S., Okeleye, K.A., Dare, M.O., Atayese, M.O., Oyekanmi, A.A., Aderibigbe,
Saxena, D., Stewart, C.N., Altosaar, I., Shu, Q., Stotzky, G. (2004). Larvicidal Cry proteins from
Schachtman, D.P., Reid, R.J., Ayling, S.M. (1998). Phosphorus uptake by plants: from soil to
Seal, A.N., Pratley, J.E., Haig, T., An, M. (2004). Identification and quantification of compounds
Séréa, Y., Sy, A.A., Sié, M., Onasanya, A. Akator, S.K., Kabore, B., Conde, C.K., Traore, M.,
Shukla, A., Vyas, D., Jha, A. (2013). Soil depth: an overriding factor for distribution of
Singh, A-P., Sumit, C., Tripathi, M-K., Singh, S. (2004). Growth and yield of green gram
Smith, S.E, Dickson, S., Smith, F.A. (2001). Nutrient transfer in arbuscular mycorrhizas: How
Smith, S.E., Smith, F.A., Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply
Smith, S.E., Jakobsen, I., Grønlund, M., Smith, F.A. (2011). Roles of arbuscular mycorrhizas in
Solaiman, M.Z., Hirata, H. (1997). Effects of indigenous arbuscular mycorrhizal fungi in paddy
Solaiman, M.Z., Hirata, H. (1997). Glomus-wetland rice mycorrhizas influenced by nursery
Staddon, P.L., Bronk Ramsey, C., Ostle, N., Ineson, P., Fitter, A.H. (2003). Rapid turnover of
Sreenivasa, M.N., Bagyaraj, D.J. (1989). Use of pesticide for mass production of vesicular-
Tinker, P.B., Gildon, A. (1983). Mycorrhizal fungi and ion uptake. In: Robb, D.A. Pierpoint,
Toljander, J.F., Lindahl, B.D., Paul, L.R., Elfstrand, M., Finlay, R.D. (2007). Influence of
Toro, M., Azcón, R., Barea, J.M. (1997). Improvement of arbuscular mycorrhiza development by
Verbruggen, E., Veresoglou, S.D., Anderson, I.C., Caruso, T., Hammer, E.C., Kohler, J., Rillig,
Villegas, J., Fortin, J.A. (2001). Phosphorus solubilization and pH changes as a result of the
Walkley, A., Black, I.A. (1934). An examination of Degtjareff method for determining soil
West Africa Rice Development Association. (2001). New rice for Africa (Nerica) – Rice for life.
Zarea, M.J., Ghalavand, A., Goltapeh, E.M., Rejali, F., Zamaniyan, M. (2009). Effects of mixed
Zhang, Q., Wang, G. (2005). Studies on nutrient uptake of rice and characteristics of soil