INFLUENCE OF Miscanthus × giganteus RHIZOME MASS ON THE CROP ESTABLISHMENT

  • Aleksandar S Simić Univerzitet u Beogradu, Poljoprivredni fakultet, Katedra za ratarstvo i povrtarstvo
  • Željko S Dželetović Univerzitet u Beogradu, INEP – Institut za primenu nuklearne energije, Odeljenje za radioekologiju i agrohemiju, Beograd
  • Gordana Z Andrejić Univerzitet u Beogradu, INEP – Institut za primenu nuklearne energije, Odeljenje za radioekologiju i agrohemiju, Beograd
  • Hakan F Geren University of Ege, Faculty of Agriculture, Department of Field Crops, Izmir

Abstract


The aim of the present investigation was to assess the influence of rhizome mass of the bioenergy crop M. × giganteus on the success of plantation establishment and biomass yield in the first 10 years of cultivation. The experiment included three treatments with different rhizome masses: 10-20 g; 25-35 g, and 40-60 g. Planting density was 2 rhizomes m-2. The plants were harvested by mowing of the whole above-ground biomass each year in February. Of the total number of planted rhizomes, the least successful plantlet emergence was noticed with very low mass rhizomes. In the first season of cultivation, the greatest number of stems and crop height were encountered under the treatment with the highest rhizome mass. In the second season, crop heights were already almost equal. During the first two seasons, the highest biomass yields were recorded under the treatments with the highest rhizome masses. Although the analyzed parameters were highest with the rhizomes of 40-60g during the crop establishing stage, starting from the third season of cultivation, high yields of above-ground biomass may be obtained also with lower mass rhizomes. With the highest biomass yield (25.85±7.36 Mg DM ha-1), the crop established with rhizomes of 25-35 g is clearly standing out.

References

Atkinson, C.J. (2009). Establishing perennial grass energy crops in the UK: a review of current propagation options for Miscanthus. Biomass and Bioenergy, 33, 752–759.

Bilandžija, N., Jurišić, V., Voća, N., Leto, J., Matin, A., Grubor, M., & Krička, T. (2017). Energy valorization of Miscanthus × giganteus biomass: Case study in Croatia. Journal on Processing and Energy in Agriculture, 21(1), 32-36.

Bilandžija, N., Leto, J., Kiš, D., Jurišić, V., Matin, A., & Kuže, I. (2014). The impact of harvest timing on properties of Miscanthus × giganteus biomass as a CO2 neutral energy source. Collegium Antropologicum, 38(S1), 85-90.

Bilandžija, N., Voća, N., Jurišić, V., Leto, J., Matin, A., Grubor, M., & Krička, T. (2016). Theoretical estimation of biomethane production Miscanthus × giganteus from in Croatia. Agriculturae Conspectus Scientificus, 81(4), 225-230.

Capecchi, L., Di Girolamo, G., Vecchi, A., & Barbanti, L. (2013). Efficienza di utilizzo dell`azoto in impianti mature di specie erbacee perenni da biomassa nel nord Italia. Italian Journal of Agronomy, 8(S1), 5-9.

Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osorio, M.L., Carvalho, I., Faria, T., & Pinheiro, C. (2002). How plants cope with water stress in the field? Photosynthesis and growth. Annals of Botany, 89(7), 907-916.

Christian, D.G., & Haase, E. (2001). Agronomy of Miscanthus. In: Jones, M.B. and Walsh, M. (Eds.), Miscanthus for energy and fibre. (pp. 21-45). James & James Ltd, London.

Clifton-Brown, J.C., Stampfl, P.F., & Jones, M.B. (2004). Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biology, 10(4), 509-518.

Cosentino, S.L., Patanè, C., Sanzone, E., Copani, V., & Foti, S. (2007). Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean environment. Industrial Crops and Products, 25(1), 75-88.

Cvetković, O., Pivić, R., Dinić, Z., Maksimović, J., Trifunović, S., & Dželetović, Ž. (2016). Hemijska ispitivanja miskantusa gajenog u Srbiji – Potencijalni obnovljiv izvor energije. Zaštita materijala, 57(3), 412-417.

Daraban, A.E., Jurcoane, S., & Voicea, I. (2015). Miscanthus giganteus - an overview about sustainable energy resource for household and small farms heating systems. Biotechnology Research & Innovation, 20(3), 10369-10380.

Dohleman, F.G., Heaton, E.A., Arundale, R.A., & Long, S.P. (2012). Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy, 4(5), 534-544.

Dželetović, Ž., Maksimović, J., & Živanović, I. (2014). Yield of Miscanthus × giganteus during crop establishment at two locations in Serbia. Journal on Processing and Energy in Agriculture, 18(2), 62-64.

Dželetović, Ž., Mihailović, N., & Živanović, I. (2013). Prospects of using bioenergy crop Miscanthus × giganteus in Serbia. In: Méndez-Vilas A. (Ed.), Materials and processes for energy: communicating current research and technological developments. (pp. 360-370). Formatex Research Center, Badajoz, Spain.

Dželetović, Ž.S. (2012). Miskantus (Miscanthus × giganteus Greef et Deu.) - Proizvodne odlike i produktivnost biomase (Miscanthus - Production Quality and Biomass Productivity), Zadužbina Andrejević: Beograd, Srbija.

Dželetović, Ž.S., & Glamočlija, Đ.N. (2015). Effect of nitrogen on the distribution of biomass and element composition of the root system of Miscanthus × giganteus. Archives of Biological Sciences, 67(2), 547-560.

Easson, D.L., Forbes, E.G.A., & McCracken, A.R. (2010). The effects of rhizome size, planting density and plastic mulch on the growth and dry matter yield of miscanthus over three seasons. Advances in Animal Biosciences, 1(1), 12-12.

Fonteyne, S., Roldán-Ruiz, I., Muylle, H., De Swaef, T., Reheul, D., & Lootens, P. (2016). A review of frost and chilling stress in Miscanthus and its importance to biomass yield. In: Barth, S., Murphy-Bokern, D., Kalinina, O., Taylor, G., & Jones, M. (Eds.), Perennial biomass crops for a resource - Constrained World. (pp. 127-144). Springer, Cham, Switzerland.

Himken, M., Lammel, J., Neukirchen, D., Czypionka-Krause, U., & Olfs, H.-W. (1997). Cultivation of Miscanthus under West European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization. Plant and Soil, 189(1), 117-126.

Hocking, T., Khan, H., & Carver, P. (2011). Miscanthus establishment – a review of current practices and future developments. Aspects of Applied Biology, 112, 239-240.

Huisman, S.A., & Kortleve, W.J. (1994). Mechanization of crop establishment, harvest and postharvest conservation of Miscanthus sinensis Giganteus. Industrial Crops and Products, 2(4), 289–297.

Humentyk, M., Kwak, V., Zamoyski, O., & Radejko, B. (2013). Biomass productivity of Miscanthus depending on the quality of planting material and growing conditions in the western forest-steppe region of Ukraine. MOTOROL Commission of Motorization and Energetics in Agriculture, 15(4), 84-89.

Jain, A.K., Khanna, M., Erickson, M., & Huang, H. (2010). An integrated biogeochemical and economic analysis of bioenergy crops in the Midwestern United States. GCB Bioenergy, 2(5), 217-234.

Khan, H., Hooton, R., & Hocking, T. (2011). Rhizome viability and shoot vigour in relation to Miscanthus establishment. Aspects of Applied Biology, 112, 241-248.

Kørup, K., Lærke, P.E., Baadsgaard, H., Andersen, M.N., Kristensen, K., Münnich, C., Didion, T., Jensen, E.S., Mårtensson, L.-M., & Jørgensen, U. (2018). Biomass production and water use efficiency in perennial grasses during and after drought stress. GCB Bioenegry, 10(1), 12-27.

Lesur, C., Jeuffroy, M.-H., Makowski, D., Riche, A.B., Shield, I., Yates, N., Fritz, M., Formowitz, B., Grunert, M., Jorgensen, U., Laerke, P.E., & Loyce, C. (2013). Modeling long-term yield trends of Miscanthus × giganteus using experimental data from across Europe. Field Crops Research, 149, 252-260.

Lewandowski, I. (1988). Propagation method as an important factor in the growth and development of Miscanthus × giganteus. Industrial Crops and Products, 8(3), 229-245.

Lewandowski, I., Clifton-Brown, J.C., Scurlock, J.M.O., & Huisman, W. (2000). Miscanthus: European experience with a novel energy crop. Biomass & Bioenergy, 19(4), 209–227.

Masters, M.D., Black, C.K., Kantola, I.B., Woli, K.P., Voigt, T., David, M.B., & De Lucia, E.H. (2016). Soil nutrient removal by four potential bioenergy crops: Zea mays, Panicum virgatum, Miscanthus × giganteus, and prairie. Agriculture, Ecosystems & Environment, 216, 51-60.

Miguez, F.E., Villamil, M.B., Long, S.P., & Bollero, G.A. (2008). Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production. Agricultural and Forest Meteorology, 148(8-9), 1280–1292.

MAFF (2001). Ministry of Agriculture, Forestry and Fisheries. Planting and Growing Miscanthus – Best Practice Guidelines, DEFRA Publications, PB No. 5424, (p. 20), London.

Mishra, U., Torn, M.S., & Fingerman, K. (2013). Miscanthus biomass productivity within US croplands and its potential impact on soil organic carbon. GCB Bioenergy, 5(4), 391-399.

Monti, A., & Zatta, A. (2009). Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agriculture, Ecosystems & Environment, 132, 252-259.

Muñoz, F., Cancino, J., Rodríguez, R., & Olave, R. (2018). Evaluación de crecimiento, rendimiento y calorimetría de biomasa de Miscanthus × giganteus (Poaceae) establecido en el centro-sur de Chile. Revista de la Facultad de Ciencias Agrarias, 50(1), 47-60.

Nassi o Di Nasso, N., Roncucci, N., Triana, F., Tozzini, C., & Bonari, E. (2011). Seasonal nutrient dynamics and biomass quality of giant reed (Arundo donax L.) and miscanthus (Miscanthus × giganteus Greef et Deuter) as energy crops. Italian Journal of Agronomy, 6(3), 152-158.

Neukirchen, D., Himken, M., Lammel, J., Czypionka-Krause, U., & Olfs, H.-W. ( 1999). Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. European Journal of Agronomy, 11(3-4), 301-309.

Nishiwaki, A., Mizuguti, A., Kuwabara, S., Toma, Y., Ishigaki, G., Miyashita, T., Yamada, T., Matuura, H., Yamaguchi, S., Rayburn, A.L., Akashi, R., & Stewart, J.R. ( 2011). Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus saccariflorus and Miscanthus sinensis in southern Japan. American Journal of Botany, 98(1), 154–159.

Oliveira, J.A., West, C.P., Afif, E., & Palencia, P. (2017). Comparison of Miscanthus and Switchgrass Cultivars for Biomass Yield, Soil Nutrients, and Nutrient Removal in Northwest Spain. Agronomy Journal, 109(1), 122-130.

Perić, M., Komatina, M., Antonijević, D., Bugarski, B., & Dželetović, Ž. (2018a). Life Cycle Impact Assessment of Miscanthus Crop for Sustainable Household Heating in Serbia. Forests, 9(10), 654.

Perić, M., Komatina, M., Antonijević, D., Bugarski, B., & Dželetović, Ž. (2018b). Diesel production by fast pyrolysis of Miscanthus giganteus, well-to-pump analysis using the greet model. Thermal Science, OnLine-First, doi:10.2298/TSCI171215113P.

Price, L., Bullard, M., Lyons, H., Anthony, S., & Nixon, P. (2004). Identifying the yield potential of Miscanthus × giganteus: an assessment of the spatial and temporal variability of M.×giganteus biomass productivity across England and Wales. Biomass & Bioenergy, 26(1), 3–13.

Pyter, R., Heaton, E., Dohleman, F., Voigt, T., & Long, S. (2009). Agronomic experiences with Miscanthus × giganteus in Illinois, USA. In: Mielenz, J.R. (Ed.), Biofuels: Methods and protocols. (pp. 41-52). Human Press, New York, 2009.

Pyter, R.J., Dohleman, F.G., & Voigt, T.B. (2010). Effects of rhizome size, depth of planting and cold storage on Miscanthus × giganteus establishment in the Midwestern USA. Biomass & Bioenergy, 34(10), 1466-1470.

Singh, M.P., Erickson, J.E., Sollenberger, L.E., Woodard, K.R., Vendramini, J.M.B., & Gilbert, R.A. (2015). Mineral composition and removal of six perennial grasses grown for bioenergy. Agronomy Journal, 107(2), 466-474.

Soare, M., Iancu, P., Soare, R., Bonea, D., & Matei, G. (2017). Researches concerning the cultivation of Miscanthus giganteus on sandy soils. In: International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management. SGEM 2017, 17(42), 513-518. Albena, Bulgaria.

Stępień, W., Górska, E.B., Pietkiewicz, S., & Kalaji, M.H. (2014). Long-term mineral fertilization impact on chemical and microbiological properties of soil and Miscanthus × giganteus yield. Plant, Soil and Environment, 60(3), 117-122.

Xu, J., Gauder, M., Gruber, S., & Claupein, W. (2017). Yields of Annual and Perennial Energy Crops in a 12-year Field Trial. Agronomy Journal, 109(3), 811-821.

Yost, M.A., Randall, B.K., Kitchen, N.R., Heaton, E.A., & Myers, R.L. (2017). Yield Potential and Nitrogen Requirements of Miscanthus × giganteus on Eroded Soil. Agronomy Journal, 109(2), 684-695.

Živanović, Lj., Ikanović, J., Popović, V., Simić, D., Kolarić, Lj., Maklenović, V., Bojović, R., & Stevanović, P. (2014). Effect of planting density and supplemental nitrogen nutrition on the productivity of miscanthus. Romanian Agricultural Research, 31, 291-298.

Published
2019/05/01
Section
Original Scientific Paper