BIOGENOST RIZOSFERNOG SLOJA ZEMLJIŠTA RAZLIČITIH GENOTIPOVA PŠENICE POD UTICAJEM TRETMANA ĐUBRENJA

  • Svetlana M Roljević Nikolić Institut Tamis https://orcid.org/0000-0002-3139-0289
  • Željko Dolijanović Poljoprivredni fakultet Univerzitet u Beogradu
  • Dušan Kovačević Poljoprivredni fakultet Univerzitet u Beogradu
  • Snežana Oljača Poljoprivredni fakultet Univerzitet u Beogradu
  • Helena Majstorović Institut Tamis
Ključne reči: pšenica, organska proizvodnja, biohumus, biofertilizator, gljive, aktinomicete, amonifikatori, oligonitrofilne bakterije

Sažetak


U radu je ispitivana biogenost zemljišta sa aspekta brojnosti različitih fizioloških grupa mikroorganizama u rizosfernoj zoni četiri podvrste, odnosno sorte pšenice, na tri tretmana đubrenja u sistemu organske proizvodnje. Poljski ogled je realizovan po metodi potpuno slučajnog blok sistema u četiri ponavljanja, na zemljištu tipa izluženi černozem, u periodu 2009 – 2012 godine. Uočena je značajna varijabilnost brojnosti proučavanih fizioloških grupa mikroorganizama između podvrsta, odnosno sorti pšenice, kao i tretmana đubrenja. U rizosfernom sloju zemljišta obične pšenice pronađen je najveći broj mikoriznih gljiva (24.37 x 103 g-1). Zemljište uzorkovano u zoni rizosfere kompaktum pšenice odlikovalo se najvećim brojem oligonitrofilnih bakterija (361.47 x 105 g-1) i amonifikatora (119.27 x 105 g-1). Nije bilo značajnih razlika u brojnosti aktinomiceta između sorti obične, kompaktum i tvrde pšenice, ali je njihov najmanji broj utvrđen kod sorte krupnika (11.25 x 103 g-1). Na tretmanu kombinovane primene biofertilizatora i organskog đubriva, utvrđen je značajno veći broj gljiva (28.2%), amonifikatora (56.6%) i oligonitrofnih bakterija (14.6%) u poređenju sa kontrolom, dok je značajan uticaj biofertilizatora konstatovan samo kod amonifikatora (39.2%). Dobijeni rezultati ukazuju da se odabirom adekvatnog sortimenta useva, uz primenu odgovarajućih formulacija đubriva može uticati na specifičnosti mikrobne zajednice koja je veoma značajan činilac plodnosti zemljišta,  naročito u uslovima organske proizvodnje koja se u potpunosti oslanja na prirodne resurse i procese.

Biografija autora

Svetlana M Roljević Nikolić, Institut Tamis

Naučna oblast: biotehničke nauke

Uža naučna disciplina: organska polјoprivreda

Naučno zvanje: viši naučni saradnik

Reference

AbdElgawad, H., Abuelsoud, W., Madany, M.M., Selim, S., Zinta, G., Mousa, A.S., & Hozzein, W.N. (2020). Actinomycetes enrich soil rhizosphere and improve seed quality as well as productivity of legumes by boosting nitrogen availability and metabolism. Biomolecules, 10(12), 1675.


Abhilash, P.C., Powell, J.R., Singh, H.B., & Singh, B.K. (2012). Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends in biotechnology, 30(8), 416-420.


Araújo, A.S., Leite, L.F., Santos, V.B., & Carneiro, R.F. (2009). Soil microbial activity in conventional and organic agricultural systems. Sustainability, 1(2), 268- 276.


Bever, J.D., Platt, T.G., & Morton, E.V. (2012). Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annual Review of Microbiology, 66, 265-283.


Bibhuti, B.D.,  & Dkhar M.S. (2011). Rhizosphere Microbial Populations and Physico Chemical Properties as Affected by Organic and Inorganic Farming Practices. American-Eurasian J. Agric. & Environ. Sci., 10 (2), 140-150.


Carelli, M., Gnocchi, S., Fancelli, S., Mengoni, A., Paffetti, D., Scotti, C., & Bazzicalupo, M. (2000). Genetic diversity  and dynamics of Sinorhizobium meliloti populations nodulating dif-ferent alfalfa cultivars in Italian soils. Applied and Environmental Microbiology, 66, 4785-4789.


Chang, E.H., Chung, R.S., & Tsai Y.H. (2007). Effect of different application rates of organic fertilizer on soil enzyme activity and microbial Population. Soil Science and Plant Nutrition,  53, 132-140.


Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. Journal of advanced research, 19, 29-37.


da Costa, P.B., Beneduzi, A., de Souza, R., Schoenfeld, R., Kayser Vargas, L., & Passaglia, L. M. P. (2013). The effects of different fertilization conditions on bacterial plant growth promoting traits: guidelines for directed bacterial prospection and testing. Plant and Soil, 368, 267-280.


Ding, J.L., Jiang, X., Ma, M.C., Zhou, B.K., Guan, D.W., Zhao, B.S., Zhou, J., Cao, F.M., Li, L., & Li, J. (2016). Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Applied Soil Ecology, 105, 187-195


Fließbach, A., Oberholzer, H.R., Gunst, L., Mäder, P.,  & Fliessbach, A. (2017). Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystems and Environment, 118, 273–284


Gałązka, A., Grzęda, E., & Jończyk, K. (2019). Changes of microbial diversity in rhizosphere soils of new quality varieties of winter wheat cultivation in organic farming. Sustainability, 11(15), 4057.


Gao, C., El-Sawah, A.M., Ali, D.F.I., Alhaj Hamoud, Y., Shaghaleh, H., & Sheteiwy, M.S. (2020). The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy, 10(3), 319.


Gqozo, M.P., Bill, M., Siyoum, N., Labuschagne, N., & Korsten, L. (2020). Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa. Applied Soil Ecology, 151, 103543.


Hayat, R., Ali, S., Amara, U., Khalid, R. & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60, 579–598.


Jezierska-Tys, S., Rachoń, L., Rutkowska, A., & Szumiło, G. (2012). Effect of new lines of winter wheat on microbiological activity in Luvisol. International Agrophysics, 26(1), 33-38.


Karličić, V., Radić, D., Jovičić-Petrović, J., Lalević, B., Jovanović, L., Kiković, D., & Raičević, V. (2016). Isolation and characterization of bacteria and yeasts from contaminated soil. Journal of Agricultural Sciences (Belgrade), 61(3), 247-256.


Krasiljnikov, N.N. (1949). Opredeljitelj bakterii i aktinomicetov. AN SSSR


Kumar, U., Shahid, M., Tripathi, R., Mohanty, S., Kumar, A., Bhattacharyya, P., ... & Nayak, A. K. (2017). Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecological indicators, 73, 536-543.


Le Guillou, C., Chemidlin Prévost‐Bouré, N., Karimi, B., Akkal‐Corfini, N., Dequiedt, S., Nowak, V., ... & Ranjard, L. (2019). Tillage intensity and pasture in rotation effectively shape soil microbial communities at a landscape scale. MicrobiologyOpen8(4), e00676.


Li, Q., Chen, J., Wu, L., Luo, X., Li, N., Arafat, Y., ... & Lin, W. (2018). Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems. International journal of molecular sciences, 19(2), 622.


Liang, R., Hou, R., Li, J., Lyu, Y., Hang, S., Gong, H., & Ouyang, Z. (2020). Effects of different fertilizers on rhizosphere bacterial communities of winter wheat in the North China Plain. Agronomy, 10(1), 93.


Łyszcz, M., & Gałazka, A. (2016). Selected molecular methods used in assessing the biodiversity of soil organisms. Postępy Mikrobiologii, 55, 309–319.


Miller, H.J., Liljeroth, E., Henken, G., & Veen, J.V. (1990). Fluctuations in the fluorescent pseudomonad and actinomycete populations of rhizosphere and rhizoplane during the growth of spring wheat. Canadian Journal of Microbiology, 36(4), 254-258.


Mohammadi, K. (2011). Soil Microbial Activity and Biomass as Influenced by Tillage and Fertilization in Wheat Production American-Eurasian. Journal of Agriculture and Environmental Sciences, 10 (3), 330-337..


Mrkovački, N., Đalović, I., Jarak, M., Bjelić, D., & Adamović, D. (2012). Mikroorganizmi u rizosferi: uloga i značaj u održivoj poljoprivredi. Bilten za alternativne biljne vrste, 44(85), 40-49.


Mushtaq, Z., Faizan, S., & Hussain, A. (2021). Role of Microorganisms as Biofertilizers. In Hakeem K.R. et al. (eds.), Microbiota and Biofertilizers, (pp. 83-98). Springer, Cham.


Pfeiffer, S., Mitter, B., Oswald, A., Schloter-Hai, B., Schloter, M., Declerck, S., & Sessitsch, A. (2017). Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiology Ecology, 93(2) fiw242.


Pochon, J., & Tardieux, P. (1962). Techniques d’analyse en microbiologie du sol. Paris, France.


Raičević, V., Lalević, B., Ličina, V., Vasić, G., & Antić-Mladenović, S. (2005). Microbiological activity of barley rhizosphere grown on deposol. Savremena poljoprivreda, 54(3-4), 487-491.


Rashedu, I., Madhaiyan, M., Boruah, Hari P. Deka, Woo-Jong, Y., Gill-Seung, L., Qingling, Fu., Hongqing, H., & Tongmin,  S. (2009). Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. Journal of Microbiology and Biotechnology, 19(10), 1213-1222.


Rasulić, N., Delić, D., Stajković-Srbinović, O., Buntić, A., Kuzmanović, Đ., Knežević, M., & Sikirić, B. (2021). Microbiological and basic agrochemical properties of Eutric Cambisols in western and southwestern Serbia. Zemljište i biljka, 70(2), 1-9.


Rosas, S.B., Avanzin, G., Carlier, E., Pasluosta, C., Pastor, N., & Rovera, M. (2009). Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biology & Biochemistry, 41, 1802-1806.


Sarić, Z. (1989). Praktikum iz mikrobiologije. Naučna knjiga, Beograd.


Shaharoona, B.M., Naveed, M.A., & Zahir, Z.A. (2008). Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol, 79, 147-155.


Sharlau microbiology: Handbook of microbiology Culture Media (2000). Ref. 1-051 (Czapek-Dox), p. 87, Sixt Int. Edition, Barcelona, Spain


Singh, J.S., Pandey, V.C., & Singh, D.P. (2011). Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agriculture, ecosystems & environment, 140(3-4), 339-353.


Sivojiene, D., Kacergius, A., Baksiene, E., Maseviciene, A., & Zickiene, L. (2021). The Influence of Organic Fertilizers on the Abundance of Soil Microorganism Communities, Agrochemical Indicators, and Yield in East Lithuanian Light Soils. Plants, 10(12), 2648.


Tkacz, A., Pini, F., Turner, T.R., Bestion, E., Simmonds, J., Howell, P., Greenland, A., Cheema, J., Emms, D. M., Uauy, C., & Poole, P. S. (2020). Agricultural selection of wheat has been shaped by plant-microbe interactions. Frontiers in Microbiology, 11, 132.


Wang, J., Song, Y., Ma, T., Raza, W., Li, J., Howland, J.G., Huang, Q.,  & Shen, Q. (2017). Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Applied Soil Ecology, 112, 42–50


Wang, S., Li, T., Zheng, Z., & Chen, H. Y. (2019). Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. Science of the Total environment, 654, 1023-1032.


Wei, Z., & Jousset, A. (2017). Plant breeding goes microbial. Trends in Plant Science, 22(7), 555-558.


Weng, X., Li, J., Sui, X., Li, M., Yin, W., Ma, W., ... & Mu, L. (2021). Soil microbial functional diversity responses to different vegetation types in the Heilongjiang Zhongyangzhan Black-billed Capercaillie Nature Reserve. Annals of Microbiology, 71(1), 1-11.


Xu, X., Thornton, P.E, & Post, W.M. (2013). A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22, 737-749.


Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z., & Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports, 10(1), 1-11.


Zhao, J., Liu, J., Liang, H., Huang, J., Chen, Z., Nie, Y., Wang, C., & Wang, Y. (2018). Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health. PLoS One. 13(2), e0192967


Zhu, Z., Bai, Y., Lv, M., Tian, G., Zhang, X., Li, L., ... & Ge, S. (2020). Soil fertility, microbial biomass, and microbial functional diversity responses to four years fertilization in an apple orchard in North China. Horticultural plant journal, 6(4), 223-230.

Objavljeno
2022/12/29
Rubrika
Originalni naučni članak