BIOLOŠKA KONTROLA BOLESTI STOPALA I KORENOVA GRAŠKA KORIŠĆENJEM FORMULISANOG PROIZVODA TRICHODERMA
Sažetak
Fusarium oxysporum i Sclerotium rolfsii su uglavnom odgovorni za trulež stopala i korena graška. Trichoderma je filamentozna gljiva iz klase Ascomicota i reda Hipocreales koja raste u zemljištu, drvetu, biljnim materijalima i trulim biljkama. Plant Pathologi Research plot sa Univerziteta nauke i tehnologije Hajee Mohammad Danesh u Dinajpuru, Bangladeš, sproveo je ovu randomizovanu istragu kompletnog dizajna blokova kako bi testirao fungicid grupe Trichoderma za kontrolu truleži i truleži graška. Pet bio-fungicidnih tretmana grupe Trichoderma-Decoprima (T2), Licomak (T3), Dinamic (T4), Tricost (T5), Provak 200 (T6), Trichoderma (T7) i Provak 200 (T6) - korišćeno je za uporedi rezultate sa netretiranim kontrolnim dijagramima. Licomak (T3) je bio dobar u suzbijanju bolesti graška i truleži korena i drugih pokazatelja rasta tokom mnogih datuma. Licomak (T3) je dao najveći prinos (39,81 g/parc) 92 dana nakon setve u poređenju sa drugim tretmanima i netretiranim parcelama (11,67 g/parc). Iako je hemijski tretman Provak 200 (T6) kontrolisao bolest truleži graška i korena i dao 33,76 g po parceli, nije ekološki prihvatljiv. Licomak (T3) je imao najveće rezultate 75 dana nakon setve po svim metrikama, uključujući broj preživelih sadnica (64,67 po parceli), najmanji broj zaraženih biljaka (4 po parceli), visinu biljke (67,33 cm po parceli) i broj korenskih grana/biljka (33,33/parc). Parcela tretirana Licomakom (T3) 82 dana nakon setve imala je najveću dužinu korena (28,33 cm/parc), broj korenovih nodula (30,33/biljka/parc) i grana (33,33/biljka/parc). Cvetovi (76/parc) i mahune (12,33/parc) dostižu vrhunac 65 i 75 dana nakon setve. Trenutna studija je pokazala da je Licomak (generički naziv: Trichoderma) najbolji bio-fungicid za lečenje bolesti graška i truleži korena na ekološki prihvatljiv način i za povećanje proizvodnje povećanjem zdravlja biljaka. Ispitivanje promoviše terensku upotrebu Licomak-a, bio-fungicida.
Reference
Agrios, G.N. (2005). Plant Pathology (pp. 948). Florida (EUA).
Akhter, W., Bhuiyan, M.K.A., Sultana, F., & Hossain, M.M. (2015). Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.). Comptes Rendus Biologies, 338(1), 21-28. https://doi.org/10.1016/j.crvi.2014.10.003.
Baćanović-Šišić, J., Šišić A., Schmidt, J.H., & Finckh, M.R. (2018). Identification and characterization of pathogens associated with root rot of winter peas grown under organic management in Germany. European Journal of Plant Pathology, 151, 745–755. http://doi/org/10.1007/s10658-017-1409-0
Gomez, K.A., & Gomez, A.A. (1984). Statistical procedures for agricultural research. John wiley and sons.
Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. https://doi.org/10.1038/nrmicro797
Hoque, M.A., Hamim, I., Haque, M.R., Ali, M.A., & Ashrafuzzaman, M. (2014). Effect of some fungicides on foot and root rot of lentil. Universal Journal of Plant Science, 2(2), 52-56. http://doi/org/10.13189/ujps.2014.020205
Hussein, N.A., Al-Janabi, H.J.K., Al-Mashhady, F.R., Abood Al-Janabi, J.K., & Shakir Al-Shujairi, A.R. (2022). Antagonistic activities of bioagent fungi Trichoderma harzianum and Pleurotus ostreatus against three species of Fusarium in cucumber plants. Asia Pacific Journal of Molecular Biology and Biotechnology, 30(1), 12–21. http://doi/org/10.35118/apjmbb.2022.030.1.02
Iqbal, J., Yousaf, U., Zia, S., Asgher, A., Afzal, R., Ali, M., Sheikh, A.U.R., & Sher, A. (2019). Pulses Diseases “Important limiting factor in yield’’ and their Managements. Asian Journal of Research in Crop Science, 3(2), 21.
Kashem, M.A., Hossain, I., & Hasna, M.K. (2011). Use of Trichoderma in biological control of foot and root rot of lentil (Lens culinaris Medik). International Journal of Sustainable Crop Production, 6(1), 29-35. http://doi/org/10.3329/bjar.v40i4.26945
Ketta, H.A., & Hewedy, O.A.R. (2021). Biological control of Phaseolus vulgaris and Pisum sativum root rot disease using Trichoderma species. Egyptian Journal of Biological Pest Control 31, 96. https://doi.org/10.1186/s41938-021-00441-2
Mollah, M.M.I., & Hassan, N. (2023). Efficacy of Trichoderma harzianum, as a biological fungicide against fungal diseases of potato, late blight and early blight. Journal of Natural Pesticide Research, 5, 100047. https://doi.org/10.1016/j.napere.2023.100047.
MCPHEE, K. (2003): Dry pea production and breeding: A mini-review. Journal of Food, Agriculture and Environment, 1, 64-69.
Mukherjee, M., Mukherjee, P.K., Horwitz, B.A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian Journal of Microbiology, 52, 522–529. http://doi/org/10.1007/s12088-012-0308-5
Naseby D.C., Pascual, J.A., & Lynch, J.M. (2000). Effect of biocontrol strains of Trichoderma on plant growth, Pythium ultimum populations, soil microbial communities and soil enzyme activities, Journal of Applied Microbiology, Volume 88(1), 161–169. https://doi.org/10.1046/j.1365-2672.2000.00939.x
Papavizas, C.G., & Ayers, W.A. (1974). Aphanomyces species and their root diseases in peas and sugarbeet - a review. Technical Bulletin no. 1485. United States Department of Agriculture. pp.158.
Pfender, W.E. (1984). Aphanomyces root rot. In: Hagedorn, D.J. (Ed), Compendium of pea diseases (pp. 25-28). The American Phytopathological Society, Minnesota.
Schreuder, J.C. (1949). Voet- en vaatziekten bij erwten (pp. 136-143). In: Tien jaar Peulvruchten Studie Combinatie (PSC).
Sharma, P., Sharma, M., Raja, M., Singh, D.V., & Srivastava, M. (2016). Use of Trichoderma spp. in biodegradation of Carbendazim. Indian Journal of Agricultural Science, 86(7):891-894.