ПАРАМЕТРИЈСКЕ И НЕПАРАМЕТРСКЕ МЕТОДЕ ЗА ПРОЦЕНА ГЕНОТИПА ОЗИМЕ РАЖИ ПРЕМА СТАБИЛНОСТИ ПРИНОСА Зрна
Sažetak
The aim of this study was to identify high-yielding, stable and adaptive rye landraces and cultivars for commercial and breeding purposes. The trial was carried out from 2014 to 2022 and included 16 cultivars and 7 Bulgarian landraces. The experiment was conducted in a block design with randomized design of the variants in four replications. Sixteen parametric and non-parametric parameters of grain yield stability were determined. The average of the sum ranks (ASR), the AMMI stability value (ASV), the yield stability index (YSI) and the genotype selection index (GSI) were also calculated. Year had the highest statistically significant effect on the grain yield per hectare. Parametric and non-parametric stability parameters estimated G13, G12, G20 and G21 genotypes as the most stable. ASV identified G13, G18, G12 and G9 as the most stable genotypes, while YSI found G13, G19, G12 and G18, respectively. GSI classified G13, G12, G18, and G19 as genotypes with the broadest adaptability to adverse climatic conditions. They could serve as source material in rye breeding programmes.
Reference
Akbar, M.R., Purwoko, B.S., Dewi, I.S., Suwarno, W.B. & Sugiyanta (2021). Genotype × environment interaction and stability analysis for high yielding doubled haploid lines of lowland rice. Turkish Journal of Field Crops, 26(2), 218-225.
Amelework, A.B., Bairu, M.W., Marx, R., Laing, M. & Venter, S.L. (2023). Genotype × Environment Interaction and stability analysis of selected cassava cultivars in South Africa. Plants (Basel), 12(13), 2490.
Becker, H.C. & Leon, J. (1988). Stability analysis in plant breeding. Plant Breeding, 101, 1–23.
de Filho, J.S.S., Olivoto, T., de Souza, C.M. & de Oliveira, E.J. (2023). Multi-trait selection in multi-environments for performance and stability in cassava genotypes. Frontiers in Plant Science, 14, 1282221.
de Souza, M.H., Júnior, J.D.P., De Marco Steckling, S., Mencalha, J., Dias, F.S., de Carvalho Rocha, J.R.A.S., Carneiro, P.C.S. & de Souza Carneiro, J.E. (2020). Adaptability and stability analyses of plants using random regression models. PLoS ONE, 15(12), e0233200.
Đekić, V., Milivojević, J. & Branković, S. (2018). The interaction of genotype and environment on yield and quality components in triticale. Biologica Nyssana, 9(1), 45-53.
Desheva, G. & Valchinova, E. (2023). Morpho-agronomic assessment of genetic diversity among rye accessions using multivariate analyses. Bulgarian Journal of Agricultural Science, 29 (2), 338-350.
Dias, C., Santos, C. & Mexia, J.T. (2022). Adaptability and stability analysis of common wheat production. AIP Conference Proceedings, 2611, 090007.
Eberhart, S.A.T. & Russell, W.A. (1966). Stability parameters for comparing varieties. Crop Science, 6, 36–40.
Egea-Gilabert, C., Pagnotta, M.A. & Tripodi, P. (2021). Genotype × Environment Interactions in crop breeding. Agronomy, 11, 1644.
Farshadfar, E., Mahmodi, N. & Yaghotipoor, A. (2011). AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science, 5(13), 1837-1844.
Finlay, K.W. & Wilkinson, G.N. (1963). The Analysis of Adaptation in a Plant-Breeding Programme. Australian Journal of Agricultural Research, 14, 742-754.
Francis, T.R. & Kannenberg, L.W. (1978). Yield stability studies in short-season maize. 1. A Descriptive method for grouping genotypes. Canadian Journal of Plant Science, 58, 1029-1034.
Ghazvini, H., Pour-Aboughadareh, A., Sharifalhosseini, M., Razavi, S.A., Mohammadi, S., Kalkhoran, M.G., Hafshejani, A.F. & Khakizadeh, Gh. (2018). Phenotypic stability analysis of barley promising lines in the cold regions of Iran. Crop Breeding Journal, 8(1-2), 17-29.
Hackauf, B., Siekmann, D. & Fromme, F.J. (2022). Improving yield and yield stability in winter rye by hybrid breeding. Plants, 11(19), 2666.
Hadasch, S., Laidig, F., Macholdt, J., Bönecke, E. & Piepho, H.P. (2020). Trends in mean performance and stability of winter wheat and winter rye yields in a long-term series of variety trials. Field Crops Research, 252, 107792.
Haffke, S., Wilde, P., Schmiedchen, B., Hackauf, B., Roux, S., Gottwald, M. & Miedaner, T. (2015). Toward a selection of broadly adapted germplasm for yield stability of hybrid rye under normal and managed drought stress conditions. Crop science, 55(3), 1026-1034.
Hassani, M., Mahmoud, S.B., Saremirad, A. & Taleghani, D. (2023). Genotype by environment and genotype by yield*trait interactions in sugar beet: analyzing yield stability and determining key traits association. Scientific Report, 13, 23111.
Hühn, M. (1979). BeiträgezurErfassung der phänotypischenStabilität. I. Vorschlageiniger auf RanginformationenberuhendenStabilitätsparameter (Contributions for detecting the phenotypic stability. I. Proposal some based on rank information stability parameters). EDV in Medizin und Biologie, 10,112-117.
Kang, M.S. (1988). A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Research Communication, 16, 113-115.
Kang, M.S. (1993). Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy Journal, 85, 754-757.
Kartina, N., Purwoko, B.S., Dewi, I.S., Wirnas, D. & Sugiyanta, A. (2019). Genotype by environment interaction and yield stability analysis of doubled haploid lines of upland rice. SABRAO Journal of Breeding and Genetics, 51(2), 191-204.
Karuniawan, A., Maulana, H., Ustari, D., Dewayani, S., Solihin, E., Solihin, M.A., Amien, S. & Arifin, M. (2021). Yield stability analysis of orange - Fleshed sweet potato in Indonesia using AMMI and GGE biplot. Heliyon, 7(4), e06881.
Kebede, G., Worku, W., Jifar, H. & Feyissa, F. (2023). Stability analysis for fodder yield of oat (Avena sativa L.) genotypes using univariate statistical models under diverse environmental conditions in Ethiopia. Ecological Genetics and Genomics, 29, 100202.
Klimek-Kopyra, A., Bacior, M. & Neugschwandtner, R. (2023). Hybrid rye (Secale cereale L.) as a good crop component to enhance yield stability in a winter cereal mixture. Acta Agrobotanica, 76, 172670.
Köse, O.D.E. (2022). Multi-Environment Analysis of grain yield and quality traits in oat (Avena sativa L.). Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 28(2), 278-286.
Laidig, F., Hans-Peter, P., Rentel, D., Drobek, T., Meyer, U. & Huesken, A. (2017). Breeding progress, variation, and correlation of grain and quality traits in winter rye hybrid and population varieties and national on-farm progress in Germany over 26 years. Theoretical and Applied Genetic, 130, 981–998.
Matongera, N., Ndhlela, T., van Biljon, A. & Labuschagneet, M. (2023). Genotype x environment interaction and yield stability of normal and biofortified maize inbred lines in stress and non-stress environments. Cogent Food and Agriculture, 9(1), 2163868.
Matova, P.M., Kamutando, C.N., Mutari, B., Magorokosho, C. & Labuschagne, M. (2022). Adaptability and stability analysis of commercial cultivars, experimental hybrids and lines under natural fall armyworm infestation in Zimbabwe using different stability models. Agronomy, 12, 1724.
Mengistu, B. & Abu, M. (2023). Evaluation of stability parameters for the selection of stable and superior sunflower genotypes. Cogent Food and Agriculture, 9(2), 2275406.
Nassar, R. & Hühn, M. (1987). Studies on estimation of phenotypic stability: tests of significance for nonparametric measures of phenotypic stability. Biometrics, 43, 45–53.
Pinthus, M.J. (1973). Estimate of genotypic value: A proposed method. Euphytica, 22, 121–123.
Plaisted, R.I. & Peterson, L.C. (1959). A technique for evaluating the ability of selection to yield consistently in different locations or seasons. American Potato Journal, 36, 381–385.
Plaisted, R.L. (1960). A shorter method for evaluating the ability of selections to yield consistently over locations. American Potato Journal, 37, 166–172.
Podolska, G. & Aleksandrowicz, E. (2019). Progress in cereal varieties for bread purposes. ZESZYT, 60(14), 25-35.
Purchase, J.L. (1997). Parametric analysis to describe G x E interaction and yield stability in winter wheat. Ph.D Dissertation. Department of Agronomy, Faculty of Agriculture, University of the Free State, Bloemfontein, South Africa. 148 p
Poudel, M.R., Ghimire, S., Pandey, M.P., Dhakal, K., Thapa, D.B. & Poudel, H.K. (2020). Yield stability analysis of wheat genotypes at irrigated, heat stress and drought condition. Journal of Biology and Today's World, 9(5), 220.
Pour-Aboughadareh, A., Yousefian, M., Moradkhani, H., Poczai, P. & Siddique, K.H.M. (2019). Stabilitysoft: A new online program to calculate parametric and non-parametric stability statistics for crop traits. Applications in Plant Sciences, 7(1), e1211.
Pour-Aboughadareh, A., Khalili, M., Poczai, P. & Olivoto, T. (2022). Stability indices to deciphering the Genotype-by-Environment Interaction (GEI) effect: An applicable review for use in plant breeding programs. Plants, 11, 414.
Pour-Aboughadareh, A., Barati, A., Gholipoor, A., Zali, H., Marzooghian, A., Koohkan, S.A., Shahbazi-Homonloo, K. & Houseinpour, A. (2023). Deciphering genotype-by-environment interaction in barley genotypes using different adaptability and stability methods. Journal of Crop Science and Biotechnology, 26, 547–562.
Purchase, R.L. (1997). Parametric analysis to describe genotype by environment interaction and yield stability in winter wheat. Ph.D. Thesis, Department of Agronomy, Faculty of Agriculture of the University of the Free State, Bloemfontein, South Africa.
Reckling, M., Ahrends, H., Tsu-Wei, C., Eugster, W., Hadasch, S., Knapp, S., Laidig, F., Linstädter, A., Macholdt, J., Hans-Peter, P., Schiffers, K. & Döring, T.F. (2021). Methods of yield stability analysis in long-term field experiments. A review. Agronomy for Sustainable Development, 41, 27.
Shojaei, S.H., Mostafavi, K., Lak, A., Omrani, A., Omrani, S., Mousavi, S.M.N., Illés, Á., Bojtor, C. & Nagy, J. (2022). Evaluation of stability in maize hybrids using univariate parametric methods. Journal of Crop Science and Biotechnology, 25, 269–276.
Siekmann, D., Jansen, G., Zaar, A., Kilian, A., Fromme, F.J. & Hackauf, B.A. (2021). Genome-wide association study pinpoints quantitative trait genes for plant height, heading date, grain quality, and yield in rye (Secale cereale L.). Frontiers in Plant Science, 12, 718081.
Shukla, G. (1972). Some statistical aspects of partitioning genotype-environmental components of variability. Heredity, 29, 237-245.
Thennarasu, K. (1995). On certain non-parametric procedures for studying genotype-environment interactions and yield stability. PhD thesis, PJ School, IARI, New Delhi, India.
Thiam, E.H., Jellen, E.N., Jackson, E.W., Nelson, M., Rogers, W., El Mouttaqi, A. & Benlhabib, O. (2023). Productivity and stability evaluation of 12 selected Avena magna ssp. domestica lines based on multi-location experiments during three cropping seasons in Morocco. Agriculture, 13,1486.
Wodebo, K.Y., Tolemariam, T., Demeke, S., Garedew, W., Tesfaye, T., Zeleke, M., Gemiyu, D., Bedeke, W., Wamatu, J. & Sharma, M. (2023). AMMI and GGE Biplot analyses for mega-environment identification and selection of some high-yielding oat (Avena sativa L.) genotypes for multiple environments. Plants, 12, 3064.
Wricke, G. (1962). Übereine Methode zur Erfassung der ökologischen Streubreite in Feldversuchen. Zeitschrift für Pflanzenzüchtung, 47, 92–96.
