Kinetics of Carbothermic Reduction of Synthetic Chromite

  • Yaxian Wang
  • Lijun Wang University of Science and Technology Beijing
  • Jipeng Yu
  • Kuo-Chih Chou
Keywords: kinetics, chromite, carbothermal reduction,

Abstract


In order to optimize the current reduction process of chromite, a good knowledge of reduction mechanism involved is required. The basic component in chromite ore is FeCr2O4, thus, kinetic investigation of synthetic FeCr2O4 with different amount of carbon were carried out in the temperature range of 1473K to 1673K under both isothermal and non-isothermal mode. The iron can be easily reduced compared with chromium. And higher reduction degree of chromite can be achieved by increasing temperature and carbon content. With the supporting of X-ray Diffraction and Scanning Electron Microscope methods, the formation of metallic products followed the sequence: Fe-C alloy, (Fe,Cr)7C3and Fe-Cr-C alloy. Kinetics analysis showed that the first stage was controlled by nucleation with an apparent activation energy of 120.22kJ/mol, while the chromium reduction was controlled by gas diffusion with an apparent activation energy of 288.48kJ/mol.

References

K. P. D Perry, C. W. P. Finn, R. P. King,Metall. Trans. B,19 (4) B (1988) 677-684.

O. Soykan. R. H. Eric,R. P. King.Metall. Trans. B, 22(1) B (1991) 53-63.

N. Barcza,Electric Furnace Proceedings, 29 (1971) 88-93.

Y. Xiao, C. Schuffeneger, M. Reuter, L. Holappa, T. Seppala, Proc.ⅩInt. Ferroalloy Congress, 1-4 February, Cape Town, Africa, 2004,p.1-4.

M. Kekkonen, Y. Xiao,L. Holappa,Proc. VII Int. Ferroalloy Congress, 11-14 June, Trondhein, Norway, 1995, p.351-360.

W. J. Rankin,Arch. Eisenhuttenwes, 50 (9) (1979) 373-378.

H. G. Katayama,M. Tokuda,Trans. Iron Steel Inst. Jpn., 20 (3) (1980) 154-162.

R. Hiltunen, J. Harkki, Proc.ⅩInt. Ferroalloy Congress, 1-4 February, Cape Town, Africa, 2004, p.36-46.

D. Chakraborty, S. Ranganathan,S. N. Sinha,Metall. Mater. Trans. B, 36 (4) B (2005) 437-444.

P. Weber,R. H. Eric,Metall. Trans. B, 24 (6) B (1993) 987-995.

P. Weber,R. H. Eric,Minerals Eng., 19(3) (2006) 318-324.

P. Weber andR. H. Eric, Proc. ⅥInt. Ferroalloy Congress, 8-11 March, Cape Town, South Africa, 1992, p.71-77.

H. V. Duong,R. F. Johnston,Ironmaking &Steelmaking, 27(3) (2000) 202-206.

A. Lekatou,R. D. Walker,Ironmaking &Steelmaking, 24(2) (1997) 133-143.

Y. L. Ding,N. A. Warner,Ironmaking &Steelmaking,24(4) (1997) 283-287.

Y. L. Ding,N. A. Warner:Thermochimica Acta, 292(1) (1997) 85-94.

N. F. Dawson,R. I. Edwards,Proc. ⅣInt. Ferroalloy Congress, 31 August-3 September, Rio de Janeiro, Brazil, 1986, p.105-113.

J. Li, G. Bai,G. Li,Chinese Journal of Nonferrous Metals, 5 (2011) 1159-1164 (in Chinese).

D. Neuschutz, Janβen, G. Friedrich,A. Wiechowskj, Proc. ⅦInt. Ferroalloy Congress,11-14 June, Trondheim, Norway, 1995, p.371-380

Y. L. Ding,N. A. Warner,Ironmaking &Steelmaking, 24(3) (1997) 224-229.

N. S. S. Murti, V. Seshadri,Trans. Iron Steel Ins. Jpn.,22(12) (1982) 925-933.

Q. Lin, M. Zhang, R. J. Xu, B. Song,J. Chinese Rare Earth Soc., 18(9) (2000) 209-211 (in Chinese).

A. Lekatou,R. D. Walker,Ironmaking &Steelmaking, 22(5) (1995) 378-392.

Published
2014/06/15
How to Cite
Wang, Y., Wang, L., Yu, J., & Chou, K.-C. (2014). Kinetics of Carbothermic Reduction of Synthetic Chromite. Journal of Mining and Metallurgy, Section B: Metallurgy, 50(1), 15-21. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/4155
Section
Original Scientific Paper