SARS-COV-2: GENETIC VARIABILITY, MUTATIONS AND VARIANTS OF CONCERN FOR THE GLOBAL WORLD

  • Maja Ćupić University of Belgrade Faculty of Medicine
Keywords: mutational petterns, main variant of concern, SARS-CoV-2, COVID-19, B.1.1.7, B.1.351, P.1, B.1.617

Abstract


Since emerging from Wuhan, China, in December of 2019, the novel coronavirus named SARS-CoV-2 has been causing devastating severe respiratory infections in humans worldwide.The new emerging disease was called COVID-19 and as early as the beginning of 2020 the world found itself in a COVID 19 pandemic. Despite the slow evolutionary rate of SARS-CoV-2 relative to other RNA viruses, its massive and rapid transmission during the COVID-19 pandemic has enabled it to acquire significant genetic diversity since it first entered the human population. This led to the emergence of numerous variants, some of them recently being labeled “variants of concern” (VOC). Emerging SARS-CoV-2 variants can be problematic if one or more of the independent mutations result in changes that make the virus more pathogenic, resistant to treatment, able to escape vaccines, or able to evade diagnostic tests.

So far, there are four globally recognized VOCs (Alpha or B.1.1.7, Beta or B.1.351, Gamma or P.1 and newly recognized as VOC Delta or lineage B.1.617.2, and areas of the emerging variant of concern first time observed are United Kingdom, South Africa, Brazil, and India, respectively.

Notable variants are those that contain mutations within the S gene, particularly within the region that codes for the receptor-binding domain (RBD) that recognize and attachte the specific ACE2 cell receptor. These mutations are responsible for increased viral transmission and influence disease severity, reliability of clinical tests as well as vaccine and therapy efficacy.VOCs characteristics and their mutational patterns, indicating the necessity of permanently close monitoring on a global level.

References

1. Zhu N., Zhang D.,Wang W., Li X., Yang B., Song J., et al. A novel coronavirus frompatients with pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727-733. doi: 10.1056/NEJMoa2001017. Epub 2020 Jan 24. PMID: 31978945; PMCID: PMC7092803.
2. Zhou P., Yang X. L., Wang X. G., Hu B., Zhang L., Zhang W., et al. A
pneumonia outbreak associated with a new coronavirus of probable bat origin.
Nature. 2020 Mar;579(7798):270-273. doi: 10.1038/s41586-020-2012-7. Epub 2020 Feb 3. PMID: 32015507; PMCID: PMC7095418.
3. Centers for Disease Control and Prevention. Variants of the virus that causes COVID-19. CDC; 2021. Available from: https://www.cdc.gov/coronavirus/2019ncov/variants/index.html.
4. Ayoubkhani D., Khunti K., NafilyanV., Maddox T., Humberstone B., Diamond I., et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ. 2021 Mar 31;372:n693. doi: 10.1136/bmj.n693. PMID: 33789877; PMCID: PMC8010267.
5. World Health Organization (WHO). “Official COVID-19 Information”. Available online: https://www.worldometers.info/coronavirus/ (accessed on July22, 2021).
6. Buchan W.B.,Yao,D. J. Severe Acute Respiratory Syndrome Coronavirus 2:
The Emergence of Important Genetic Variants and Testing Options for Clinical Laboratories. Clin Microbiol Newsl. 2021 Jun 1;43(11):89-96. doi: 10.1016/j.clinmicnews.2021.05.004. Epub 2021 May 21. PMID: 34035555; PMCID: PMC8138692.
7. Zhong N.S., Zheng B.J; Li Y.M., Poon L.L.M.,Xie Z.H., Chan K.H. et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet. 2003 Oct 25;362(9393):1353-8. doi: 10.1016/s0140-6736(03)14630-2. PMID: 14585636; PMCID: PMC7112415.
8. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D.,Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012 Nov 8;367(19):1814-20. doi: 10.1056/NEJMoa1211721. Epub 2012 Oct 17. Erratum in: N Engl J Med. 2013 Jul 25;369(4):394. PMID: 23075143.
9. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020 Feb 22;395(10224):565-574. doi: 10.1016/S0140-6736(20)30251-8. Epub 2020 Jan 30. PMID: 32007145; PMCID: PMC7159086.
10. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar;579(7798):265-269. doi: 10.1038/s41586-020-2008-3. Epub 2020 Feb 3. Erratum in: Nature. 2020 Apr;580(7803):E7. PMID: 32015508; PMCID: PMC7094943.
11. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270-273. doi: 10.1038/s41586-020-2012-7. Epub 2020 Feb 3. PMID: 32015507; PMCID: PMC7095418.
12. Kaur N., Singh R., Dar Z., BijarniaK.R., DhingraN., Kaur T. Genetic comparison among various coronavirus strains for the identification of potential vaccine targets of SARS-CoV-2. Infect Genet Evol. 2021 Apr;89:104490. doi: 10.1016/j.meegid.2020.104490. Epub 2020 Aug 1. PMID: 32745811; PMCID: PMC7395230.
13. Lazarevic I.,Pravica V.,Miljanovic D., Cupic M. Immune Evasion of SARS-CoV-2 Emerging Variants: What HaveWe Learnt So Far? Viruses. 2021 Jun 22;13(7):1192. doi: 10.3390/v13071192. PMID: 34206453; PMCID: PMC8310325.
14. Kim D., Lee J.Y.,Yang J.S., Kim J.W.,Kim, V.N., Chang H. The architecture of SARS CoV-2 transcriptome. Cell. 2020 May 14;181(4):914-921.e10. doi: 10.1016/j.cell.2020.04.011. Epub 2020 Apr 23. PMID: 32330414; PMCID: PMC7179501.
15. Wu A., Peng Y., Huang B., Ding X,,Wang, X., Niu P. et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe. 2020 Mar 11;27(3):325-328. doi: 10.1016/j.chom.2020.02.001. Epub 2020 Feb 7. PMID: 32035028; PMCID: PMC7154514.
16. Tortorici M.A., Veesler D. Structural insights into coronavirus entry. Adv Virus Res. 2019;105:93-116. doi: 10.1016/bs.aivir.2019.08.002. Epub 2019 Aug 22. PMID: 31522710; PMCID: PMC7112261.
17. Teoh K.T.,Siu Y.L., Chan W.L., Schlüter M.A., Liu C.J., Peiris J.S.,et al. The SARS coronavirus E protein interacts with PALS1 and alters tight junction formation and epithelial morphogenesis. Mol Biol Cell. 2010 Nov 15;21(22):3838-52. doi: 10.1091/mbc.E10-04-0338. Epub 2010 Sep 22. PMID: 20861307; PMCID: PMC2982091.
18. Michel C.J., Mayer C., Poch O., Thompson J.D.Characterization of accessory genes in coronavirus genomes. Virol J. 2020 Aug 27;17(1):131. doi: 10.1186/s12985-020-01402-1. PMID: 32854725; PMCID: PMC7450977.
19. Huang Y., Yang C., Xu X.F., Xu W., Liu S.W. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020 Sep;41(9):1141-1149. doi: 10.1038/s41401-020-0485-4. Epub 2020 Aug 3. PMID: 32747721; PMCID:
20. Walls A.C., Park Y.J., TortoriciM.A.,Wall A., McGuire A.T.,Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Apr 16;181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058. Epub 2020 Mar 9. Erratum in: Cell. 2020 Dec 10;183(6):1735. PMID: 32155444; PMCID: PMC7102599.
21. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020 Apr;5(4):562-569. doi: 10.1038/s41564-020-0688-y. Epub 2020 Feb 24. PMID: 32094589; PMCID: PMC7095430.
22. Finkelstein M.T., Mermelstein A.G., Parker Miller E.,Seth P.C.,Stancofski E.D., Fera D.
Structural Analysis of Neutralizing Epitopes of the SARS-CoV-2 Spike to Guide Therapy and Vaccine Design Strategies. Viruses. 2021 Jan 19;13(1):134. doi: 10.3390/v13010134. PMID: 33477902; PMCID: PMC7833398.23.
23. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., et al. SARSCoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5. PMID: 32142651; PMCID: PMC7102627.
24.Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor binding domain bound to the ACE2 receptor. Nature. 2020 May;581(7807):215-220. doi: 10.1038/s41586-020-2180-5. Epub 2020 Mar 30. PMID: 32225176.
25. Wrobel A.G., Benton D.J., Xu P., Roustan C., Martin S.R.,Rosentha P.B., et al.. SARS-CoV-2 and bat RaTG13spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol. 2020 Aug;27(8):763-767. doi: 10.1038/s41594-020-0468-7. Epub 2020 Jul 9. Erratum in: Nat Struct Mol Biol. 2020 Oct;27(10):1001. PMID: 32647346; PMCID: PMC7610980.
26. Dhama K., Patel K.S., Sharun K., Pathak M., Tiwari R., Yatoo I. M., et al. SARS-CoV-2 jumping the species barrier: Zoonotic lessons from SARS, MERS and recent advances to combat this pandemic virus. Travel Med Infect Dis. 2020 Sep-Oct;37:101830. doi: 10.1016/j.tmaid.2020.101830. Epub 2020 Aug 2. PMID: 32755673; PMCID: PMC7396141.
27. Parczewski M., Ciechanowicz A. Molecular epidemiology of SARS-CoV-2: A review of current data on genetic variability of the virus. Pol Arch Intern Med. 2020 Jan 29;131(1):63-69. doi: 10.20452/pamw.15550. Epub 2020 Aug 11. PMID: 32785209.
28. Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., AbfaltererW.,et al. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020 Aug 20;182(4):812-827.e19. doi: 10.1016/j.cell.2020.06.043. Epub 2020 Jul 3. PMID: 32697968; PMCID: PMC7332439.
29. Alm E., Broberg E.K., Connor T., Hodcroft E.B., Komissarov A.B., Maurer-Stroh S., et al. Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020. Euro Surveill. 2020 Aug;25(32):2001410. doi: 10.2807/1560-7917.ES.2020.25.32.2001410. Erratum in: Euro Surveill. 2020 Aug;25(33): PMID: 32794443; PMCID: PMC7427299.
30. Rambaut, A., Holmes, E.C., O’Toole, Á., Hill, V., McCrone, J.T., Ruis, C., et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020 Nov;5(11):1403-1407. doi: 10.1038/s41564-020-0770-5. Epub 2020 Jul 15. PMID: 32669681; PMCID: PMC7610519.
31. World Health Organization (WHO). “Weekly Epidemiological Update on COVID-19—1 June 2021”. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---1-june-2021
32. World Health Organization (WHO)Weekly epidemiological update on COVID-19 - 26 July 2021. Available online: https://www.who.int/publications/m/item/weekly-operational-update-on-covid-19---26-july-2021
33. European Centre for Disease Prevention and Control (ECDC)(CDC). “SARS-CoV-2 SARS-CoV-2 variants of concern as of 22 July 2021. Available online: https://www.google.com/search?client=firefox-b-d&q=ECDCsars+cov2+variants+of+concern+as+of+8+july+2021
34. Centers for Disease Control and Prevention (CDC). “SARS-CoV-2 Variant Classifications and Definitions”. Available online:https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
35. Tang J.W., Tambyah P.A., Hui D.S. Emergence of a new SARS-CoV-2 variant in the UK. J Infect. 2021 Apr;82(4):e27-e28. doi: 10.1016/j.jinf.2020.12.024. Epub 2020 Dec 28. PMID: 33383088; PMCID: PMC7834693.
36.Graha C., Seow J., Huettner I., Khan H., Kouphou N., Acors S., et al. Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity. 2021 Jun 8;54(6):1276-1289.e6. doi: 10.1016/j.immuni.2021.03.023. Epub 2021 Apr 1. PMID: 33836142; PMCID: PMC8015430.
37. Public Health England (PHE). Government Digital Service. “Variants: Distribution of Cases Data”. Available online: https://www.gov.uk/government/publications/covid-19-variants-genomically-confirmed-case-numbers/variantsdistribution-of-cases-dat
38. Tegally H., Wilkinson E., Giovanetti M., Iranzadeh A., Fonseca V., Giandhari J., et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021 Apr;592(7854):438-443. doi: 10.1038/s41586-021-03402-9. Epub 2021 Mar 9. PMID: 33690265.
39. Fujino T., Nomoto H., Kutsuna S., Ujiie M., Suzuki T., Sato R., et al. Novel SARS-CoV-2 variant in travelers from Brazil to Japan. Emerg Infect Dis. 2021 Apr;27(4):1243–5. doi: 10.3201/eid2704.210138. Epub 2021 Feb 10. PMID: 33567247; PMCID: PMC8007308.
40. Sabino E.C., Buss L.F., Carvalho M.P.S., Prete, C.A.J., Crispim M.A.E., Fraiji N.A., et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet. 2021 Feb 6;397(10273):452-455. doi: 10.1016/S0140-6736(21)00183-5. Epub 2021 Jan 27. PMID: 33515491; PMCID: PMC7906746.
41. Singh J, Rahman A.S., Nasreen Z.,Ehtesham Z.N., Hira S.,Hasnain S. E. SARS-CoV-2 variants of concern are emerging in India. Nat Med. 2021 Jul;27(7):1131-1133. doi: 10.1038/s41591-021-01397-4. PMID: 34045737.
42. Liu Z., VanBlargan L.A., Bloyet L.M., Rothlauf P.W., Chen R.E., Stumpf S., et al. Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host Microbe. 2021 Mar 10;29(3):477-488.e4. doi: 10.1016/j.chom.2021.01.014. Epub 2021 Jan 27. PMID: 33535027; PMCID: PMC7839837.
Published
2021/10/25
Section
Review Paper