TALOŽENJE METALA (I METALOIDA) U SRČANOM TKIVU I MEHANIZMI KOJI LEŽE U OSNOVI NJIHOVIH KARDIOTOKSIČNIH EFEKATA

N/A

  • Ana Ćirović Medicinski fakultet u Beogradu
  • Nebojša Tasić Medicinski Fakultet Beograd
Ključne reči: Taloženje metala, miokard, nedostatak gvožđa.

Sažetak


Teški metali imaju snažan kardiotoksični efekat, a kardiomiociti su uopšteno govoreći osetljive ćelije, te su stoga veoma podložne toksičnosti uzrokovanoj prisustvom teških metala. Veza između izloženosti teškim metalima i njihovog doprinosa u patofiziologiji različitih kardiovaskularnih poremećaja, kao što su koronarna bolest srca (engl. coronary artery disease; CAD) i kardiomiopatije (engl. Cardiomyophaties; CMP), prepoznata je pretežno putem kliničkih istraživanja u kojima su nivoi metala ili metaloida mereni u krvi ili urinu osoba koje su imale pomenuta oboljenja. Međutim, ključna karika koja bi doprinela boljem razumevanju povezanosti teških metala i nastanku kardioloških oboljenja su studije koje ispituju taloženje teških metala unutar srčanog tkiva. Ovakve studije, bilo da su analizirani uzorci dobijeni post-mortem ili tokom invazivnih procedura u pacijenata, trenutno nedostaju. Kako bi se postiglo sveobuhvatno razumevanje potencijalne uloge metala i metaloida u nastanku CMP ili CAD, ovakva istraživanja su neophodna. Osim toga, određeni komorbiditeti kao što je nedostatak gvožđa mogu ubrzati taloženje teških metala u srčanom mišiću, povećavanjem gustine receptora za transferin (transferrin receptor 1; TfR1). Uticaj teških metala na kontraktilni aparat srca, zajedno sa njihovim potencijalom da započnu mitohondrijalnu apoptozu, čini deo složenog patofiziološkog pejzaža.  Bazični mehanizmi uključeni u oštećenja usled prisustva teških metala su generisanje reaktivnih vrsta kiseonika (engl. Reactive oxygen species; ROS) i peroksidacija makromolekula.

U ovom članku ćemo se osvrnuti na studije koje su analizirale taloženje teških metala unutar miokarda; kao i na studije koje su se bavile molekularnim mehanizmima putem kojih metali ili metaloidi izazivaju kardiotoksičnost.

Reference

1.         Jovanovic D, Jakovljević B, Rašić-Milutinović Z, Paunović K, Peković G, Knezević T. Arsenic occurrence in drinking water supply systems in ten municipalities in Vojvodina Region, Serbia. Environ Res. 2011;111(2):315-8.


2.         Borowska S, Brzóska MM. Metals in cosmetics: implications for human health. J Appl Toxicol. 2015;35(6):551-72.


3.         Vromman V, Waegeneers N, Cornelis C, De Boosere I, Van Holderbeke M, Vinkx C, et al. Dietary cadmium intake by the Belgian adult population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010;27(12):1665-73.


4.         Song Y, Wang Y, Mao W, Sui H, Yong L, Yang D, et al. Dietary cadmium exposure assessment among the Chinese population. PloS one. 2017;12(5):e0177978.


5.         Barregard L, Sallsten G, Harari F, Andersson EM, Forsgard N, Hjelmgren O, et al. Cadmium exposure and coronary artery atherosclerosis: a cross-sectional population-based study of Swedish middle-aged adults. Environ Health Perspect. 2021;129(6):067007.


6.         Asgary S, Movahedian A, Keshvari M, Taleghani M, Sahebkar A, Sarrafzadegan N. Serum levels of lead, mercury and cadmium in relation to coronary artery disease in the elderly: A cross-sectional study. Chemosphere. 2017;180:540-4.


7.         Liu Z, He C, Chen M, Yang S, Li J, Lin Y, et al. The effects of lead and aluminum exposure on congenital heart disease and the mechanism of oxidative stress. Reprod Toxicol. 2018;81:93-8.


8.         He S, Zhuo L, Cao Y, Liu G, Zhao H, Song R, et al. Effect of cadmium on osteoclast differentiation during bone injury in female mice. Environ Toxicol. 2020;35(4):487-94.


9.         Egger AE, Grabmann G, Gollmann-Tepeköylü C, Pechriggl EJ, Artner C, Türkcan A, et al. Chemical imaging and assessment of cadmium distribution in the human body. Metallomics. 2019;11(12):2010-9.


10.       Limaye DA, Shaikh ZA. Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes. Toxicol Appl Pharmacol. 1999;154(1):59-66.


11.       Cirovic A, Orisakwe OE, Cirovic A, Jevtic J, Tasic D, Tasic N. Non-Uniform Bioaccumulation of Lead and Arsenic in Two Remote Regions of the Human Heart’s Left Ventricle: A Post-Mortem Study. Biomolecules. 2023;13(8):1232.


12.       Becker JS, Breuer U, Hsieh H-F, Osterholt T, Kumtabtim U, Wu B, et al. Bioimaging of metals and biomolecules in mouse heart by laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry. Anal Chem. 2010;82(22):9528-33.


13.       Frustaci A, Magnavita N, Chimenti C, Caldarulo M, Sabbioni E, Pietra R, et al. Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction.  J Am Coll Cardiol. 1999;33(6):1578-83.


14.       Kim Y, Lee B-K. Iron deficiency increases blood manganese level in the Korean general population according to KNHANES 2008. Neurotoxicology. 2011;32(2):247-54.


15.       Kim Y, Park S. Iron deficiency increases blood concentrations of neurotoxic metals in children. Korean J Pediatr. 2014;57(8):345-50.


16.       Lee B-K, Kim Y. Iron deficiency is associated with increased levels of blood cadmium in the Korean general population: analysis of 2008–2009 Korean National Health and Nutrition Examination Survey data. Environ Res. 2012;112:155-63.


17.       Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):482-8.


18.       Saljooghi AS, Fatemi S. Cadmium transport in blood serum. Toxicol Ind Health. 2010;26(4):195-201.


19.       Cabrera C, Frisk C, Löfström U, Lyngå P, Linde C, Hage C, et al. Relationship between iron deficiency and expression of genes involved in iron metabolism in human myocardium and skeletal muscle. Int J Cardiol. 2023;379:82-8.


20.       Cirovic A, Cirovic A. Iron deficiency as a promoter of cadmium-induced cardiotoxicity. Eur Heart J. 2023;44(28):2639-40.


21.       Savarese G, Anker MS, Anker SD. Iron deficiency as a promoter of cardiotoxicity: not only cadmium-induced. Eur Heart J. 2023;44(28):2641.


22.       Klinova SV, Minigalieva IA, Protsenko YL, Sutunkova MP, Gurvich VB, Ryabova JV, et al. Changes in the Cardiotoxic Effects of Lead Intoxication in Rats Induced by Muscular Exercise. Int J Mol Sci. 2022;23(8):4417.


23.       Gerzen OP, Nabiev SR, Klinova SV, Minigalieva IA, Sutunkova MP, Katsnelson BA, et al. Molecular mechanisms of mechanical function changes of the rat myocardium under subchronic lead exposure. Food Chem Toxicol. 2022;169:113444.


24.       Shen J, Wang X, Zhou D, Li T, Tang L, Gong T, et al. Modelling cadmium-induced cardiotoxicity using human pluripotent stem cell-derived cardiomyocytes. J Cell Mol Med. 2018;22(9):4221-35.


25.       Furieri LB, Fioresi M, Junior RFR, Bartolomé MV, Fernandes AA, Cachofeiro V, et al. Exposure to low mercury concentration in vivo impairs myocardial contractile function. Toxicol Appl Pharmacol. 2011;255(2):193-9.


26.       Zhao X, Li X, Wang S, Yang Z, Liu H, Xu S. Cadmium exposure induces mitochondrial pathway apoptosis in swine myocardium through xenobiotic receptors-mediated CYP450s activation. J Inorg Biochem. 2021;217:111361.


27.       Xiao Y, Wang T, Song X, Yang D, Chu Q, Kang YJ. Copper promotion of myocardial regeneration. Exp Biol Med (Maywood). 2020;245(10):911-21.


28.       Pan M, Cheng Z-w, Huang C-g, Ye Z-q, Sun L-j, Chen H, et al. Long-term exposure to copper induces mitochondria-mediated apoptosis in mouse hearts. Ecotoxicol Environ Saf. 2022;234:113329.


29.       Zhao Z, Li J, Zheng B, Liang Y, Shi J, Zhang J, et al. Ameliorative effects and mechanism of crocetin in arsenic trioxide‑induced cardiotoxicity in rats. Mol Med Rep. 2020;22(6):5271-81.


30.       El Wafa SMA, El Noury HA. Can rutin ameliorate aluminum phosphide-induced acute cardiac toxicity in adult albino rats? Int. J. Pharmacol. Toxicol. 2020;8(1):8-14.


31.       Manna P, Sinha M, Sil PC. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid. Arch Toxicol. 2008;82(3):137-49.


32.       Das SC, Varadharajan K, Shanmugakonar M, Al-Naemi HA. Chronic cadmium exposure alters cardiac matrix metalloproteinases in the heart of Sprague-Dawley rat. Front Pharmacol. 2021;12:663048.


33.       Adil M, Kandhare AD, Ghosh P, Bodhankar SL. Sodium arsenite-induced myocardial bruise in rats: Ameliorative effect of naringin via TGF-β/Smad and Nrf/HO pathways. Chem Biol Interact. 2016;253:66-77.


 

Objavljeno
2024/02/22
Rubrika
Mini pregledni članak