ACCUMULATION OF METAL(OIDS) IN MYOCARDIAL TISSUE AND THE MECHANISMS UNDERLYING THEIR CARDIOTOXIC EFFECTS

N/A

  • Ana Cirovic Medicinski fakultet u Beogradu
  • Nebojsa Tasic University of Belgrade, Faculty of Medicine
Keywords: metals bioaccumulation, myocardium, iron deficiency

Abstract


Heavy metals could exert a strong cardiotoxic effect, since cardiomyocytes are in general vulnerable cells, very sensitive to heavy metals-induced toxicity. The correlation between exposure to heavy metals and their contribution to the pathophysiology of diverse cardiovascular disorders, such as coronary artery disease (CAD) and cardiomyopathies (CMPs), has gained recognition primarily through clinical investigations wherein metal(oids) levels were quantified in the blood or urine of individuals afflicted with said disorders. However, a crucial perspective is absent due to the absence of studies that investigate the accumulation of heavy metals within cardiac tissue. These studies, whether post-mortem or involving heart samples obtained during invasive procedures, are currently lacking. To achieve a comprehensive understanding of the potential involvement of metal(oids) in the genesis of e.g. CMPs or CAD, these inquiries are indispensable. Furthermore, certain comorbidities like iron deficiency may expedite the bioaccumulation of myocardial heavy metals by augmenting the density of transferrin receptor 1 (TfR1). The impact of heavy metals on the heart's contractile machinery, coupled with their potential to initiate mitochondrial apoptosis through triggered pathways, forms part of the intricate pathophysiological landscape. Central to these mechanisms is the generation of reactive oxygen species (ROS) and the peroxidation of macromolecules.

This review shines a light on research findings pertaining to the bioaccumulation of heavy metals within the myocardium and elucidates the molecular mechanisms through which metal(oid)s induce cardiotoxicity

References

1.         Jovanovic D, Jakovljević B, Rašić-Milutinović Z, Paunović K, Peković G, Knezević T. Arsenic occurrence in drinking water supply systems in ten municipalities in Vojvodina Region, Serbia. Environ Res. 2011;111(2):315-8.


2.         Borowska S, Brzóska MM. Metals in cosmetics: implications for human health. J Appl Toxicol. 2015;35(6):551-72.


3.         Vromman V, Waegeneers N, Cornelis C, De Boosere I, Van Holderbeke M, Vinkx C, et al. Dietary cadmium intake by the Belgian adult population. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010;27(12):1665-73.


4.         Song Y, Wang Y, Mao W, Sui H, Yong L, Yang D, et al. Dietary cadmium exposure assessment among the Chinese population. PloS one. 2017;12(5):e0177978.


5.         Barregard L, Sallsten G, Harari F, Andersson EM, Forsgard N, Hjelmgren O, et al. Cadmium exposure and coronary artery atherosclerosis: a cross-sectional population-based study of Swedish middle-aged adults. Environ Health Perspect. 2021;129(6):067007.


6.         Asgary S, Movahedian A, Keshvari M, Taleghani M, Sahebkar A, Sarrafzadegan N. Serum levels of lead, mercury and cadmium in relation to coronary artery disease in the elderly: A cross-sectional study. Chemosphere. 2017;180:540-4.


7.         Liu Z, He C, Chen M, Yang S, Li J, Lin Y, et al. The effects of lead and aluminum exposure on congenital heart disease and the mechanism of oxidative stress. Reprod Toxicol. 2018;81:93-8.


8.         He S, Zhuo L, Cao Y, Liu G, Zhao H, Song R, et al. Effect of cadmium on osteoclast differentiation during bone injury in female mice. Environ Toxicol. 2020;35(4):487-94.


9.         Egger AE, Grabmann G, Gollmann-Tepeköylü C, Pechriggl EJ, Artner C, Türkcan A, et al. Chemical imaging and assessment of cadmium distribution in the human body. Metallomics. 2019;11(12):2010-9.


10.       Limaye DA, Shaikh ZA. Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes. Toxicol Appl Pharmacol. 1999;154(1):59-66.


11.       Cirovic A, Orisakwe OE, Cirovic A, Jevtic J, Tasic D, Tasic N. Non-Uniform Bioaccumulation of Lead and Arsenic in Two Remote Regions of the Human Heart’s Left Ventricle: A Post-Mortem Study. Biomolecules. 2023;13(8):1232.


12.       Becker JS, Breuer U, Hsieh H-F, Osterholt T, Kumtabtim U, Wu B, et al. Bioimaging of metals and biomolecules in mouse heart by laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry. Anal Chem. 2010;82(22):9528-33.


13.       Frustaci A, Magnavita N, Chimenti C, Caldarulo M, Sabbioni E, Pietra R, et al. Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction.  J Am Coll Cardiol. 1999;33(6):1578-83.


14.       Kim Y, Lee B-K. Iron deficiency increases blood manganese level in the Korean general population according to KNHANES 2008. Neurotoxicology. 2011;32(2):247-54.


15.       Kim Y, Park S. Iron deficiency increases blood concentrations of neurotoxic metals in children. Korean J Pediatr. 2014;57(8):345-50.


16.       Lee B-K, Kim Y. Iron deficiency is associated with increased levels of blood cadmium in the Korean general population: analysis of 2008–2009 Korean National Health and Nutrition Examination Survey data. Environ Res. 2012;112:155-63.


17.       Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997;388(6641):482-8.


18.       Saljooghi AS, Fatemi S. Cadmium transport in blood serum. Toxicol Ind Health. 2010;26(4):195-201.


19.       Cabrera C, Frisk C, Löfström U, Lyngå P, Linde C, Hage C, et al. Relationship between iron deficiency and expression of genes involved in iron metabolism in human myocardium and skeletal muscle. Int J Cardiol. 2023;379:82-8.


20.       Cirovic A, Cirovic A. Iron deficiency as a promoter of cadmium-induced cardiotoxicity. Eur Heart J. 2023;44(28):2639-40.


21.       Savarese G, Anker MS, Anker SD. Iron deficiency as a promoter of cardiotoxicity: not only cadmium-induced. Eur Heart J. 2023;44(28):2641.


22.       Klinova SV, Minigalieva IA, Protsenko YL, Sutunkova MP, Gurvich VB, Ryabova JV, et al. Changes in the Cardiotoxic Effects of Lead Intoxication in Rats Induced by Muscular Exercise. Int J Mol Sci. 2022;23(8):4417.


23.       Gerzen OP, Nabiev SR, Klinova SV, Minigalieva IA, Sutunkova MP, Katsnelson BA, et al. Molecular mechanisms of mechanical function changes of the rat myocardium under subchronic lead exposure. Food Chem Toxicol. 2022;169:113444.


24.       Shen J, Wang X, Zhou D, Li T, Tang L, Gong T, et al. Modelling cadmium-induced cardiotoxicity using human pluripotent stem cell-derived cardiomyocytes. J Cell Mol Med. 2018;22(9):4221-35.


25.       Furieri LB, Fioresi M, Junior RFR, Bartolomé MV, Fernandes AA, Cachofeiro V, et al. Exposure to low mercury concentration in vivo impairs myocardial contractile function. Toxicol Appl Pharmacol. 2011;255(2):193-9.


26.       Zhao X, Li X, Wang S, Yang Z, Liu H, Xu S. Cadmium exposure induces mitochondrial pathway apoptosis in swine myocardium through xenobiotic receptors-mediated CYP450s activation. J Inorg Biochem. 2021;217:111361.


27.       Xiao Y, Wang T, Song X, Yang D, Chu Q, Kang YJ. Copper promotion of myocardial regeneration. Exp Biol Med (Maywood). 2020;245(10):911-21.


28.       Pan M, Cheng Z-w, Huang C-g, Ye Z-q, Sun L-j, Chen H, et al. Long-term exposure to copper induces mitochondria-mediated apoptosis in mouse hearts. Ecotoxicol Environ Saf. 2022;234:113329.


29.       Zhao Z, Li J, Zheng B, Liang Y, Shi J, Zhang J, et al. Ameliorative effects and mechanism of crocetin in arsenic trioxide‑induced cardiotoxicity in rats. Mol Med Rep. 2020;22(6):5271-81.


30.       El Wafa SMA, El Noury HA. Can rutin ameliorate aluminum phosphide-induced acute cardiac toxicity in adult albino rats? Int. J. Pharmacol. Toxicol. 2020;8(1):8-14.


31.       Manna P, Sinha M, Sil PC. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid. Arch Toxicol. 2008;82(3):137-49.


32.       Das SC, Varadharajan K, Shanmugakonar M, Al-Naemi HA. Chronic cadmium exposure alters cardiac matrix metalloproteinases in the heart of Sprague-Dawley rat. Front Pharmacol. 2021;12:663048.


33.       Adil M, Kandhare AD, Ghosh P, Bodhankar SL. Sodium arsenite-induced myocardial bruise in rats: Ameliorative effect of naringin via TGF-β/Smad and Nrf/HO pathways. Chem Biol Interact. 2016;253:66-77.


 

Published
2024/02/22
Section
Mini pregledni članak