THE ROLE OF GLUTATHIONE TRANSFERASES IN RENAL CELL CARCINOMA

  • Vesna M Ćorić Institute for medical and clinical biochemistry, Faculty of medicine, University of Belgrade
  • Marija Plješa-Ercegovac Institute of Medical and Clinical Biochemistry Faculty of Medicine, University in Belgrade
  • Zoran Džamić Clinic of Urology, Clinical center of Serbia, Faculty of Medicine, University in Belgrade

Abstract


Mounting evidence suggest that members of the subfamily of cytosolic glutathione S-transferases (GSTs) possess roles far beyond the classical glutathione-dependent enzymatic conjugation of electrophilic metabolites and xenobiotics. Namely, monomeric forms of certain GSTs are capable of forming protein: protein interactions with protein kinases and regulate cell apoptotic pathways. Due to this dual functionality of cytosolic GSTs, they might be implicated in both the development and the progression of renal cell carcinoma (RCC).

Prominent genetic heterogeneity, resulting from the gene deletions, as well as from SNPs in the coding and non-coding regions of GST genes, might affect GST isoenzyme profiles in renal parenchyma and therefore serve as a valuable indicator for predicting the risk of cancer development. Namely, GSTs are involved in the biotransformation of several compounds recognized as risk factors for RCC. The most potent carcinogen of polycyclic aromatic hydrocarbon diol epoxides, present in cigarette smoke, is of benzo(a)pyrene (BPDE), detoxified by GSTs. So far, the relationship between GST genotype and BPDE-DNA adduct formation, in determining the risk for RCC, has not been evaluated in patients with RCC.

Although the association between certain individual and combined GST genotypes and RCC risk has been debated in a  the  literature, the data on the prognostic value of GST polymorphism in patients with RCC are scarce, probably due to the fact that the molecular mechanism supporting the role of GSTs in RCC progression has not been clarified as yet.

Author Biographies

Vesna M Ćorić, Institute for medical and clinical biochemistry, Faculty of medicine, University of Belgrade
Teaching Assistant and MD at the Institute for medical and clinical biochemistry, Faculty of medicine, University of Belgrade
Marija Plješa-Ercegovac, Institute of Medical and Clinical Biochemistry Faculty of Medicine, University in Belgrade

Associate Professor of Biochemistry, MD, PhD at the Institute for medical and clinical biochemistry, Faculty of medicine, University of Belgrade

Zoran Džamić, Clinic of Urology, Clinical center of Serbia, Faculty of Medicine, University in Belgrade

Full Professor of Urology, Faculty of Medicine, University in Belgrade

References

Escudier B, Porta C, Schmidinger M, Algaba F, Patard JJ, Khoo V, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol [Internet]. 2014 Sep 1 [cited 2016 Feb 11];25(suppl 3):iii49-iii56. Available from: http://annonc.oxfordjournals.org/cgi/doi/10.1093/annonc/mdu259

Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015 May;67(5):913–24.

Patard J-J, Leray E, Rioux-Leclercq N, Cindolo L, Ficarra V, Zisman A, et al. Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J Clin Oncol Off J Am Soc Clin Oncol. 2005 Apr 20;23(12):2763–71.

Srigley JR, Delahunt B, Eble JN, Egevad L, Epstein JI, Grignon D, et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am J Surg Pathol. 2013 Oct;37(10):1469–89.

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1;136(5):E359-386.

Cancer incidence and therapy in central Serbia 2013 [Internet]. Institute of Public Health of Serbia “Dr Milan Jovanović Batut”; 2015. Available from: http://www.batut.org.rs/download/publikacije/Incidencija%20i%20mortalitet%20od%20raka%202013.pdf

Gill IS, Aron M, Gervais DA, Jewett MAS. Clinical practice. Small renal mass. N Engl J Med. 2010 Feb 18;362(7):624–34.

Krabbe L-M, Bagrodia A, Margulis V, Wood CG. Surgical management of renal cell carcinoma. Semin Interv Radiol. 2014 Mar;31(1):27–32.

Ljungberg B, Campbell SC, Cho HY, Jacqmin D, Lee JE, Weikert S, et al. The Epidemiology of Renal Cell Carcinoma. Eur Urol [Internet]. 2011 Oct [cited 2016 Jul 15];60(4):615–21. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0302283811007226

Petejova N, Martinek A. Renal cell carcinoma: Review of etiology, pathophysiology and risk factors. Biomed Pap [Internet]. 2016 Jun 24 [cited 2016 Aug 1];160(2):183–94. Available from: http://biomed.papers.upol.cz/doi/10.5507/bp.2015.050.html

Capitanio U, Montorsi F. Renal cancer. The Lancet [Internet]. 2016 Feb [cited 2016 Jun 28];387(10021):894–906. Available from: http://linkinghub.elsevier.com/retrieve/pii/S014067361500046X

Escudier B, Michaelson MD, Motzer RJ, Hutson TE, Clark JI, Lim HY, et al. Axitinib versus sorafenib in advanced renal cell carcinoma: subanalyses by prior therapy from a randomised phase III trial. Br J Cancer [Internet]. 2014 Jun 10 [cited 2016 Jan 24];110(12):2821–8. Available from: http://www.nature.com/doifinder/10.1038/bjc.2014.244

Terris M, Klaassen Z, Kabaria R. Renal cell carcinoma: links and risks. Int J Nephrol Renov Dis [Internet]. 2016 Mar [cited 2016 Aug 24];45. Available from: https://www.dovepress.com/renal-cell-carcinoma-links-and-risks-peer-reviewed-article-IJNRD

International Agency for Research on Cancer, International Agency for Research on Cancer, editors. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry: ... views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, which met in Lyon, 9 - 16 February 1993. Lyon; 1993. 444 p. (IARC monographs on the evaluation of carcinogenic risks to humans).

Alexandrov K, Cascorbi I, Rojas M, Bouvier G, Kriek E, Bartsch H. CYP1A1 and GSTM1 genotypes affect benzo[a]pyrene DNA adducts in smokers’ lung: comparison with aromatic/hydrophobic adduct formation. Carcinogenesis. 2002 Dec;23(12):1969–77.

Slaga TJ, Bracken WJ, Gleason G, Levin W, Yagi H, Jerina DM, et al. Marked differences in the skin tumor-initiating activities of the optical enantiomers of the diastereomeric benzo(a)pyrene 7,8-diol-9,10-epoxides. Cancer Res. 1979 Jan;39(1):67–71.

Ketterer B. Effects of genetic polymorphism and enzyme induction in the glutathione S-transferase family on chemical safety and risk assessment. Environ Toxicol Pharmacol. 1996 Oct 15;2(2–3):157–60.

Foulkes AS. Genetic Association Studies. In: Applied Statistical Genetics with R [Internet]. New York, NY: Springer New York; 2009 [cited 2016 Jun 28]. p. 1–27. Available from: http://link.springer.com/10.1007/978-0-387-89554-3_1

Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta BBA - Gen Subj [Internet]. 2013 May [cited 2016 Apr 5];1830(5):3267–88. Available from: http://linkinghub.elsevier.com/retrieve/pii/S030441651200339X

Hollman A, Tchounwou P, Huang H-C. The Association between Gene-Environment Interactions and Diseases Involving the Human GST Superfamily with SNP Variants. Int J Environ Res Public Health [Internet]. 2016 Mar 29 [cited 2016 Jun 28];13(4):379. Available from: http://www.mdpi.com/1660-4601/13/4/379

Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51–88.

Laborde E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ [Internet]. 2010 Sep [cited 2016 Aug 1];17(9):1373–80. Available from: http://www.nature.com/doifinder/10.1038/cdd.2010.80

Grek CL, Zhang J, Manevich Y, Townsend DM, Tew KD. Causes and consequences of cysteine S-glutathionylation. J Biol Chem. 2013 Sep 13;288(37):26497–504.

Wu B, Dong D. Human cytosolic glutathione transferases: structure, function, and drug discovery. Trends Pharmacol Sci [Internet]. 2012 Dec [cited 2016 Jan 24];33(12):656–68. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0165614712001654

Egner PA, Kensler TW, Chen J-G, Gange SJ, Groopman JD, Friesen MD. Quantification of sulforaphane mercapturic acid pathway conjugates in human urine by high-performance liquid chromatography and isotope-dilution tandem mass spectrometry. Chem Res Toxicol. 2008 Oct;21(10):1991–6.

Teichert J, Sohr R, Hennig L, Baumann F, Schoppmeyer K, Patzak U, et al. Identification and quantitation of the N-acetyl-L-cysteine S-conjugates of bendamustine and its sulfoxides in human bile after administration of bendamustine hydrochloride. Drug Metab Dispos Biol Fate Chem. 2009 Feb;37(2):292–301.

Josephy PD. Genetic variations in human glutathione transferase enzymes: significance for pharmacology and toxicology. Hum Genomics Proteomics HGP. 2010;2010:876940.

Guengerich FP. Activation of alkyl halides by glutathione transferases. Methods Enzymol. 2005;401:342–53.

Thier R, Brüning T, Roos PH, Rihs H-P, Golka K, Ko Y, et al. Markers of genetic susceptibility in human environmental hygiene and toxicology: the role of selected CYP, NAT and GST genes. Int J Hyg Environ Health. 2003 Jun;206(3):149–71.

Kurtovic S, Grehn L, Karlsson A, Hellman U, Mannervik B. Glutathione transferase activity with a novel substrate mimics the activation of the prodrug azathioprine. Anal Biochem. 2008 Apr 15;375(2):339–44.

Brüning T, Lammert M, Kempkes M, Thier R, Golka K, Bolt HM. Influence of polymorphisms of GSTM1 and GSTT1 for risk of renal cell cancer in workers with long-term high occupational exposure to trichloroethene. Arch Toxicol. 1997;71(9):596–9.

Karami S, Boffetta P, Rothman N, Hung RJ, Stewart T, Zaridze D, et al. Renal cell carcinoma, occupational pesticide exposure and modification by glutathione S-transferase polymorphisms. Carcinogenesis [Internet]. 2008 Jul 1 [cited 2016 Jan 24];29(8):1567–71. Available from: http://www.carcin.oxfordjournals.org/cgi/doi/10.1093/carcin/bgn153

Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600.

Inoue T, Irikura D, Okazaki N, Kinugasa S, Matsumura H, Uodome N, et al. Mechanism of metal activation of human hematopoietic prostaglandin D synthase. Nat Struct Biol. 2003 Apr;10(4):291–6.

Tars K, Olin B, Mannervik B. Structural basis for featuring of steroid isomerase activity in alpha class glutathione transferases. J Mol Biol. 2010 Mar 19;397(1):332–40.

Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999 Oct;31(4):273–300.

Seeley SK, Poposki JA, Maksimchuk J, Tebbe J, Gaudreau J, Mannervik B, et al. Metabolism of oxidized linoleic acid by glutathione transferases: peroxidase activity toward 13-hydroperoxyoctadecadienoic acid. Biochim Biophys Acta. 2006 Jul;1760(7):1064–70.

McIlwain CC, Townsend DM, Tew KD. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene. 2006 Mar 13;25(11):1639–48.

Tew KD, Townsend DM. Glutathione-s-transferases as determinants of cell survival and death. Antioxid Redox Signal. 2012 Dec 15;17(12):1728–37.

Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, et al. Regulation of JNK signaling by GSTp. EMBO J. 1999 Mar 1;18(5):1321–34.

Cho SG, Lee YH, Park HS, Ryoo K, Kang KW, Park J, et al. Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem. 2001 Apr 20;276(16):12749–55.

Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997 Jan 3;275(5296):90–4.

Dorion S, Lambert H, Landry J. Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1. J Biol Chem. 2002 Aug 23;277(34):30792–7.

Hayes JD, Strange RC. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology. 2000 Sep;61(3):154–66.

Di Pietro G, Magno LAV, Rios-Santos F. Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol. 2010 Feb;6(2):153–70.

Guengerich FP, McCormick WA, Wheeler JB. Analysis of the kinetic mechanism of haloalkane conjugation by mammalian theta-class glutathione transferases. Chem Res Toxicol. 2003 Nov;16(11):1493–9.

Coles BF, Kadlubar FF. Human alpha class glutathione S-transferases: genetic polymorphism, expression, and susceptibility to disease. Methods Enzymol. 2005;401:9–42.

Coles BF, Kadlubar FF. Detoxification of electrophilic compounds by glutathione S-transferase catalysis: determinants of individual response to chemical carcinogens and chemotherapeutic drugs? BioFactors Oxf Engl. 2003;17(1–4):115–30.

Dusinská M, Ficek A, Horská A, Raslová K, Petrovská H, Vallová B, et al. Glutathione S-transferase polymorphisms influence the level of oxidative DNA damage and antioxidant protection in humans. Mutat Res. 2001 Oct 1;482(1–2):47–55.

Hu X, O’Donnell R, Srivastava SK, Xia H, Zimniak P, Nanduri B, et al. Active site architecture of polymorphic forms of human glutathione S-transferase P1-1 accounts for their enantioselectivity and disparate activity in the glutathione conjugation of 7beta,8alpha-dihydroxy-9alpha,10alpha-ox y-7,8,9,10-tetrahydrobenzo(a)pyrene. Biochem Biophys Res Commun. 1997 Jun 18;235(2):424–8.

Townsend DM, Findlay VL, Tew KD. Glutathione S-transferases as regulators of kinase pathways and anticancer drug targets. Methods Enzymol. 2005;401:287–307.

Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003 Oct 20;22(47):7369–75.

Reinemer P, Dirr HW, Ladenstein R, Huber R, Lo Bello M, Federici G, et al. Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. J Mol Biol. 1992 Sep 5;227(1):214–26.

Ahmad ST, Arjumand W, Seth A, Kumar Saini A, Sultana S. Impact of glutathione transferase M1, T1, and P1 gene polymorphisms in the genetic susceptibility of North Indian population to renal cell carcinoma. DNA Cell Biol. 2012 Apr;31(4):636–43.

De Martino M, Klatte T, Schatzl G, Remzi M, Waldert M, Haitel A, et al. Renal cell carcinoma Fuhrman grade and histological subtype correlate with complete polymorphic deletion of glutathione S-transferase M1 gene. J Urol. 2010 Mar;183(3):878–83.

Salinas-Sánchez AS, Sánchez-Sánchez F, Donate-Moreno MJ, Rubio-del-Campo A, Serrano-Oviedo L, Gimenez-Bachs JM, et al. GSTT1, GSTM1, and CYP1B1 gene polymorphisms and susceptibility to sporadic renal cell cancer. Urol Oncol Semin Orig Investig [Internet]. 2012 Nov [cited 2016 Jan 24];30(6):864–70. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1078143910003066

Sweeney C, Farrow DC, Schwartz SM, Eaton DL, Checkoway H, Vaughan TL. Glutathione S-transferase M1, T1, and P1 polymorphisms as risk factors for renal cell carcinoma: a case-control study. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2000 Apr;9(4):449–54.

Simic T, Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Mimic-Oka J. Glutathione S-transferases in kidney and urinary bladder tumors. Nat Rev Urol. 2009 May;6(5):281–9.

Green T, Dow J, Ellis MK, Foster JR, Odum J. The role of glutathione conjugation in the development of kidney tumours in rats exposed to trichloroethylene. Chem Biol Interact. 1997 Jul 11;105(2):99–117.

Coric VM, Simic TP, Pekmezovic TD, Basta-Jovanovic GM, Savic Radojevic AR, Radojevic-Skodric SM, et al. Combined GSTM1-Null, GSTT1-Active, GSTA1 Low-Activity and GSTP1-Variant Genotype Is Associated with Increased Risk of Clear Cell Renal Cell Carcinoma. PloS One. 2016;11(8):e0160570.

Buzio L, De Palma G, Mozzoni P, Tondel M, Buzio C, Franchini I, et al. Glutathione S-transferases M1-1 and T1-1 as risk modifiers for renal cell cancer associated with occupational exposure to chemicals. Occup Environ Med. 2003 Oct;60(10):789–93.

Longuemaux S, Deloménie C, Gallou C, Méjean A, Vincent-Viry M, Bouvier R, et al. Candidate genetic modifiers of individual susceptibility to renal cell carcinoma: a study of polymorphic human xenobiotic-metabolizing enzymes. Cancer Res. 1999 Jun 15;59(12):2903–8.

Yang X, Long S, Deng J, Deng T, Gong Z, Hao P. Glutathione S-Transferase Polymorphisms (GSTM1, GSTT1 and GSTP1) and Their Susceptibility to Renal Cell Carcinoma: An Evidence-Based Meta-Analysis. Medeiros R, editor. PLoS ONE [Internet]. 2013 May 22 [cited 2016 Jan 24];8(5):e63827. Available from: http://dx.plos.org/10.1371/journal.pone.0063827

Liu L, Qian J, Singh H, Meiers I, Zhou X, Bostwick DG. Immunohistochemical analysis of chromophobe renal cell carcinoma, renal oncocytoma, and clear cell carcinoma: an optimal and practical panel for differential diagnosis. Arch Pathol Lab Med. 2007 Aug;131(8):1290–7.

Searchfield L, Price SA, Betton G, Jasani B, Riccardi D, Griffiths DFR. Glutathione S-transferases as molecular markers of tumour progression and prognosis in renal cell carcinoma: GST-alpha in human RCC. Histopathology [Internet]. 2011 Jan [cited 2016 Jan 24];58(2):180–90. Available from: http://doi.wiley.com/10.1111/j.1365-2559.2010.03733.x

Jia C-Y, Liu Y-J, Cong X-L, Ma Y-S, Sun R, Fu D, et al. Association of glutathione S-transferase M1, T1, and P1 polymorphisms with renal cell carcinoma: evidence from 11 studies. Tumor Biol [Internet]. 2014 Apr [cited 2016 Jan 24];35(4):3867–73. Available from: http://link.springer.com/10.1007/s13277-013-1513-5

Wiencke JK. DNA adduct burden and tobacco carcinogenesis. Oncogene. 2002 Oct 21;21(48):7376–91.

Filiadis I, Hrouda D. Genetic factors in chemically-induced transitional cell bladder cancer. BJU Int. 2000 Nov;86(7):794–801.

Jung I, Messing E. Molecular mechanisms and pathways in bladder cancer development and progression. Cancer Control J Moffitt Cancer Cent. 2000 Aug;7(4):325–34.

Huang W, Shi H, Hou Q, Mo Z, Xie X. GSTM1 and GSTT1 polymorphisms contribute to renal cell carcinoma risk: evidence from an updated meta-analysis. Sci Rep. 2015;5:17971.

Abid A, Ajaz S, Khan AR, Zehra F, Hasan AS, Sultan G, et al. Analysis of the glutathione S-transferase genes polymorphisms in the risk and prognosis of renal cell carcinomas. Case-control and meta-analysis. Urol Oncol Semin Orig Investig [Internet]. 2016 May [cited 2016 May 14]; Available from: http://linkinghub.elsevier.com/retrieve/pii/S1078143916300151

Cheng H-Y, You H-Y, Zhou T-B. Relationship between GSTM1/GSTT1 Null Genotypes and Renal Cell Carcinoma Risk: A Meta-Analysis. Ren Fail [Internet]. 2012 Sep [cited 2016 Jan 24];34(8):1052–7. Available from: http://www.tandfonline.com/doi/full/10.3109/0886022X.2012.708380

Liu R, Wang X-H, Liu L, Zhou Q. No association between the GSTM1 null genotype and risk of renal cell carcinoma: a meta-analysis. Asian Pac J Cancer Prev APJCP. 2012;13(7):3109–12.

Hassan M, Feyen O, Grinstein E. Fas-induced apoptosis of renal cell carcinoma is mediated by apoptosis signal-regulating kinase 1 via mitochondrial damage-dependent caspase-8 activation. Cell Oncol Off J Int Soc Cell Oncol. 2009;31(6):437–56.

Published
2016/12/31
Section
Mini pregledni članak