GLUTATHIONE TRANSFERASE GENE POLYMORPHISM IN END STAGE RENAL DISEASE

  • Sonja R. Šuvakov University of Belgrade, Faculty of Medicine
  • Tatjana Simić Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade
  • Tatjana Damjanović Department of Nephrology, Clinical Hospital Centre Zvezdara

Abstract


Chronic kidney disease is described as a progressive and irreversible deterioration in kidney function. When there is less than 10% of nephron function pertained, patients face end-stage renal disease, where renal replacement therapy is needed. Data show that the most common method used to treat advanced and permanent kidney failure is hemodialysis. . Increased oxidative stress is a hallmark of end-stage renal disease (ESRD). Glutathione S-transferases (GST) are involved in the detoxification of xenobiotics and protection of oxidative damage. The role of genetic polymorphism of antioxidant enzymes GSTA1, GSTM1, GSTP1 and GSTT1 in susceptibility towards end-stage renal disease development has become prominent recently. Furthermore, GST gene polymorphism may modulate the degree of oxidative stress byproducts in end-stage renal disease patients and, therefore, influence their overall and cause-specific cardiovascular mortality.

Author Biographies

Sonja R. Šuvakov, University of Belgrade, Faculty of Medicine

Institute of medical and clinical biochemistry

Teaching assistant

Tatjana Simić, Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade

Full Professor, MD, PhD, Institute of Medical and Clinical Biochemistry Faculty of Medicine, University of Belgrade

Tatjana Damjanović, Department of Nephrology, Clinical Hospital Centre Zvezdara

Assistant research professor, MD

Clinical Department for Renal Diseases, Zvezdara University Medical Center, Belgrade

References

Plantinga LC, Boulware LE, Coresh J, Stevens LA, Miller ER, Saran R, et al. Patient awareness of chronic kidney disease: trends and predictors. Arch Intern Med. 2008;168(20):2268–75.

Djukanović L, Aksić-Miličević B, Antić M, Baković J, Varga Ž, Gojaković B, et al. Epidemiology of end-stage renal disease and hemodialysis treatment in Serbia at the turn of the millennium. Hemodial Int Int Symp Home Hemodial. 2012;16(4):517–25.

Foley RN, Parfrey PS, Sarnak MJ. Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol JASN. 1998 Dec;9(12 Suppl):S16-23.

Libetta C, Sepe V, Esposito P, Galli F, Dal Canton A. Oxidative stress and inflammation: Implications in uremia and hemodialysis. Clin Biochem. 2011;44(14–15):1189–98.

Kao MPC, Ang DSC, Pall A, Struthers AD. Oxidative stress in renal dysfunction: mechanisms, clinical sequelae and therapeutic options. J Hum Hypertens. 2010;24(1):1–8.

Vaziri ND, Navab M, Fogelman AM. HDL metabolism and activity in chronic kidney disease. Nat Rev Nephrol. 2010;6(5):287–96.

Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal. 2007;9(12):2277–93.

Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51–88.

Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, et al. Regulation of JNK signaling by GSTp. EMBO J. 1999;18(5):1321–34.

Krajka-Kuźniak V, Szaefer H, Baer-Dubowska W. Hepatic and extrahepatic expression of glutathione S-transferase isozymes in mice and its modulation by naturally occurring phenolic acids. Environ Toxicol Pharmacol. 2008;25(1):27–32.

Oakley AJ. Glutathione transferases: new functions. Curr Opin Struct Biol. 2005;15(6):716–23.

Morel F, Rauch C, Coles B, Le Ferrec E, Guillouzo A. The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter. Pharmacogenetics. 2002;12(4):277–86.

Magagnotti C, Pastorelli R, Pozzi S, Andreoni B, Fanelli R, Airoldi L. Genetic polymorphisms and modulation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adducts in human lymphocytes. Int J Cancer. 2003 20;107(6):878–84.

Ross VL, Board PG, Webb GC. Chromosomal mapping of the human Mu class glutathione S-transferases to 1p13. Genomics. 1993;18(1):87–91.

Ketterer B, Harris JM, Talaska G, Meyer DJ, Pemble SE, Taylor JB, et al. The human glutathione S-transferase supergene family, its polymorphism, and its effects on susceptibility to lung cancer. Environ Health Perspect. 1992;98:87–94.

Benhamou S, Lee WJ, Alexandrie A-K, Boffetta P, Bouchardy C, Butkiewicz D, et al. Meta- and pooled analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer risk. Carcinogenesis. 2002;23(8):1343–50.

Ali-Osman F, Akande O, Antoun G, Mao JX, Buolamwini J. Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem. 1997;272(15):10004–12.

Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis. 1998;19(2):275–80.

Chen Y-L, Tseng H-S, Kuo W-H, Yang S-F, Chen D-R, Tsai H-T. Glutathione S-Transferase P1 (GSTP1) gene polymorphism increases age-related susceptibility to hepatocellular carcinoma. BMC Med Genet. 2010;11:46.

Harries LW, Stubbins MJ, Forman D, Howard GC, Wolf CR. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis. 1997;18(4):641–4.

Chan QKY, Khoo U-S, Ngan HYS, Yang C-Q, Xue W-C, Chan KYK, et al. Single nucleotide polymorphism of pi-class glutathione s-transferase and susceptibility to endometrial carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(8):2981–5.

Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H, Autrup JL, et al. Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2001;10(12):1239–48.

Webb G, Vaska V, Coggan M, Board P. Chromosomal localization of the gene for the human theta class glutathione transferase (GSTT1). Genomics. 1996;33(1):121–3.

Matic M, Pekmezovic T, Djukic T, Mimic-Oka J, Dragicevic D, Krivic B, et al. GSTA1, GSTM1, GSTP1, and GSTT1 polymorphisms and susceptibility to smoking-related bladder cancer: a case-control study. Urol Oncol. 2013;31(7):1184–92.

Agrawal S, Tripathi G, Khan F, Sharma R, Baburaj VP. Relationship between GSTs gene polymorphism and susceptibility to end stage renal disease among North Indians. Ren Fail. 2007;29(8):947–53.

Datta SK, Kumar V, Ahmed RS, Tripathi AK, Kalra OP, Banerjee BD. Effect of GSTM1 and GSTT1 double deletions in the development of oxidative stress in diabetic nephropathy patients. Indian J Biochem Biophys. 2010;47(2):100–3.

Gutiérrez-Amavizca BE, Orozco-Castellanos R, Ortíz-Orozco R, Padilla-Gutiérrez J, Valle Y, Gutiérrez-Gutiérrez N, et al. Contribution of GSTM1, GSTT1, and MTHFR polymorphisms to end-stage renal disease of unknown etiology in Mexicans. Indian J Nephrol. 2013;23(6):438–43.

Suvakov S, Damjanovic T, Stefanovic A, Pekmezovic T, Savic-Radojevic A, Pljesa-Ercegovac M, et al. Glutathione S-transferase A1, M1, P1 and T1 null or low-activity genotypes are associated with enhanced oxidative damage among haemodialysis patients. Nephrol Dial Transplant. 2013;28(1):202–12.

Yang Y, Kao M-T, Chang C-C, Chung S-Y, Chen C-M, Tsai JJP, et al. Glutathione S-transferase T1 deletion is a risk factor for developing end-stage renal disease in diabetic patients. Int J Mol Med. 2004;14(5):855–9.

Nomani H, Mozafari H, Ghobadloo SM, Rahimi Z, Raygani AV, Rahimi MA, et al. The association between GSTT1, M1, and P1 polymorphisms with coronary artery disease in Western Iran. Mol Cell Biochem. 2011;354(1–2):181–7.

Tiwari AK, Prasad P, B K T, Kumar KMP, Ammini AC, Gupta A, et al. Oxidative stress pathway genes and chronic renal insufficiency in Asian Indians with Type 2 diabetes. J Diabetes Complications. 2009;23(2):102–11.

Galli F, Piroddi M, Bartolini D, Ciffolilli S, Buoncristiani E, Ricci G, et al. Blood thiol status and erythrocyte glutathione-S-transferase in chronic kidney disease patients on treatment with frequent (daily) hemodialysis. Free Radic Res. 2014;48(3):273–81.

Nomani H, Hagh-Nazari L, Aidy A, Vaisi-Raygani A, Kiani A, Rahimi Z, et al. Association between GSTM1, GSTT1, and GSTP1 variants and the risk of end stage renal disease. Ren Fail. 2016;1–7.

Lin Y-S, Hung S-C, Wei Y-H, Tarng D-C. GST M1 Polymorphism Associates with DNA Oxidative Damage and Mortality among Hemodialysis Patients. J Am Soc Nephrol. 2009;20(2):405–15.

Madamanchi NR, Zhou R-H, Vendrov AE, Niu X-L, Runge MS. Does oxidative DNA damage cause atherosclerosis and metabolic syndrome?: new insights into which came first: the chicken or the egg. Circ Res. 2010;107(8):940–2.

Madamanchi NR, Hakim ZS, Runge MS. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. J Thromb Haemost JTH. 2005;3(2):254–67.

Runge MS, Molnar K, Madamanchi NR. “Old” hearts and arteries: the role of oxidative stress. Trans Am Clin Climatol Assoc. 2010;121:52-58-60.

de Waart FG, Kok FJ, Smilde TJ, Hijmans A, Wollersheim H, Stalenhoef AFH. Effect of glutathione S-transferase M1 genotype on progression of atherosclerosis in lifelong male smokers. Atherosclerosis. 2001;158(1):227–31.

Bhat MA, Gandhi G. Association of GSTT1 and GSTM1 gene polymorphisms with coronary artery disease in North Indian Punjabi population: a case-control study. Postgrad Med J. 2016; 92(1094):701-706.

Kadıoğlu E, Taçoy G, Özçağlı E, Okyay K, Akboğa MK, Çengel A, et al. The role of oxidative DNA damage and GSTM1, GSTT1, and hOGG1 gene polymorphisms in coronary artery disease risk. Anatol J Cardiol. 2016 Apr 26; doi: 10.14744/AnatolJCardiol.2016.6697. [Epub ahead of print]

Zhang Z-X, Zhang Y. Glutathione S-transferase M1 (GSTM1) null genotype and coronary artery disease risk: a meta-analysis. Int J Clin Exp Med. 2014;7(10):3378–84.

Yeh H-L, Kuo L-T, Sung F-C, Chiang C-W, Yeh C-C. GSTM1, GSTT1, GSTP1, and GSTA1 genetic variants are not associated with coronary artery disease in Taiwan. Gene. 2013;523(1):64–9.

Ramprasath T, Senthil Murugan P, Prabakaran AD, Gomathi P, Rathinavel A, Selvam GS. Potential risk modifications of GSTT1, GSTM1 and GSTP1 (glutathione-S-transferases) variants and their association to CAD in patients with type-2 diabetes. Biochem Biophys Res Commun. 2011;407(1):49–53.

Taspinar M, Aydos S, Sakiragaoglu O, Duzen IV, Yalcinkaya A, Oztuna D, et al. Impact of Genetic Variations of the CYP1A1, GSTT1, and GSTM1 Genes on the Risk of Coronary Artery Disease. DNA Cell Biol. 2012;31(2):211–8.

Suvakov S, Damjanovic T, Pekmezovic T, Jakovljevic J, Savic-Radojevic A, Pljesa-Ercegovac M, et al. Associations of GSTM1*0 and GSTA1*A genotypes with the risk of cardiovascular death among hemodialyses patients. BMC Nephrol. 2014;15:12.

Published
2016/12/31
Section
Mini pregledni članak