The influence of lithium sulphate on Shannon entropy in lymphocyte chromatin

  • Marta B Jeremić Univerzitet u Beogradu, Medicinski fakultet, Institut za medicinsku fiziologiju, Laboratorija za celularnu fiziologiju, Višegradska 26/2 11129 Beograd
  • Igor V Pantić Univerzitet u Beogradu, Medicinski fakultet, Institut za medicinsku fiziologiju, Laboratorija za celularnu fiziologiju, Višegradska 26/2 11129 Beograd University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa IL-3498838, Israel
  • Mila Z Jakšić Univerzitet u Beogradu, Medicinski fakultet, Institut za medicinsku fiziologiju, Laboratorija za celularnu fiziologiju, Višegradska 26/2 11129 Beograd
  • Igor V Pantić Univerzitet u Beogradu, Medicinski fakultet, Institut za medicinsku fiziologiju, Laboratorija za celularnu fiziologiju, Višegradska 26/2 11129 Beograd University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa IL-3498838, Israel

Abstract


Introduction: Lithium affects numerous signal pathways in cells, which may ultimately lead to either increased or decreased gene expression in cell nuclei. However, effects of lithium on higher level of gene organization in the nuclei, like chromatin,  is still poorly understood.

Study aim: To investigate the effects of lithium on chromatin organization in the nuclei of lymphocytes by investigating changes in Shannon entropy of chromatin in these cells. Material and Methods: Peripheral blood was treated with lithium sulphate until lithium concentrations of 1mmoL/l, 2 mmoL/l i 3 mmol/l was not reached.  The smears were fixed with methanol and stained by Felgen method for DNK visualization. Cells in the smear were treated with hydrochloric acid for 120min. Schiff reagent was used for staining for 120min and smear washing was done with 6ml of 10% of water solution of natrium metabisulfite. After staining, digital micrographs for each of the most representative sample of 30 lymphocytic chromatin structures were made. Shannon entropy was calculated by converting micrograph in the format of textual numerical string. Lymphocyte chromatin was also analyzed by textural method analysis.

Results: Treatment with 1 mmol/l of lithium sulphate  did not lead to a statistically significant increase in entropy values (p>0.05). However, in samples where the concentration of lithium was 2 i 3 mmol/l, respectively, there was a statistically significant increase in entropy (p<0.05). Also, a statistically significant and dose-dependent linear trend of an increase of chromatin entropy was detected in samples (p<0.05). After lithium sulphate treatment, neither the mean value of angular second moment lymphocyte chromatin in control sample nor the inverse moment of the difference of treated lymphocytes changed (p>0.05)

Conclusion: Lithium sulphate in peripheral blood lymphocytes causes dose-dependent increase in Shannon chromatin entropy, which is not followed with similar changes in a textural chromatin parameters.

 

Key words: Lithium, chromatin, lymphocytes, Shannon entropy

Author Biographies

Igor V Pantić, Univerzitet u Beogradu, Medicinski fakultet, Institut za medicinsku fiziologiju, Laboratorija za celularnu fiziologiju, Višegradska 26/2 11129 Beograd University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa IL-3498838, Israel

Docent na institutu za medicinsku fiziologiju, univerziteta u Beogradu

Pridruženi profesor na univerzitetu u Haifi

Igor V Pantić, Univerzitet u Beogradu, Medicinski fakultet, Institut za medicinsku fiziologiju, Laboratorija za celularnu fiziologiju, Višegradska 26/2 11129 Beograd University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa IL-3498838, Israel

Docent na institutu za medicinsku fiziologiju, univerziteta u Beogradu

Pridruženi profesor na univerzitetu u Haifi

References

De AK. Textbook of inorganic chemistry, New Delhi, New Age International Publishers, 2003.

Haddad LM, Winchester JF, eds. Clinical Management of Poisoning and Drug Overdose. Philadelphia: W.B. Saunders, 1999: 960–965. http://search.msn.com/encarta/results.aspx

Palominao A, Kukoyi O, Xiong GL. Leukocytosis after lithium and clozapine combination therapy. Ann Clin Psychiatry. 2010; 22:205-206

Ferensztajn-Rochowiak E, Rybakowski JK. The effect of lithium on hematopoietic, mesenchymal and neural stem cells. Pharmacol Rep. 2016; 68:224-230.

Wolffe A. Chromatin, structure and function. Academic Press: London-San Diego, 2000.

Chieco P, Derenzini M. The Feulgen reaction 75 years on. Histochem Cell Biol. 1999; 111:345-358.

Pantic I, Dacic S, Brkic P, et al. Discriminatory ability of fractal and grey level co- occurrence matrix methods in structural analysis of hippocampus layers. J Theor Biol. 2015; 370:151-156.

Pantic I, Petrovic D, Paunovic J, Vucevic D, Radosavljevic T, Pantic S. Age-related reduction of chromatin fractal dimension in toluidine blue - stained hepatocytes. Mech Ageing Dev. 2016; 157:30-34.

Shannon, CE. A Mathematical Theory of Communication. Bell System Technical Journal. 1948; 27: 379–423.

Bywater, R.P. Prediction of protein structural features from sequence data based on Shannon entropy and Kolmogorov complexity. PLoS One 2015; 10, e0119306.

Modabbernia A, Taslimi S, Brietzke E, Ashrafi M. Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol. Psychiatry 2013; 74: 15–25.

Nassar A, Azab AN. Effects of lithium on inflammation. ACS Chem Neurosci 2014; 5: 451-458.

Nemzer LR. Shannon information entropy in the canonical genetic code. J Theor Biol. 2017; 415:158-170.

Shamir L, Wolkow CA, Goldberg IG. Quantitative measurement of aging using image texture entropy. Bioinformatics. 2009; 25:3060-3063.

Pantic I, Pantic S, Paunovic J. Aging increases nuclear chromatin entropy of erythroid precursor cells in mice spleen hematopoietic tissue. Microsc Microanal. 2012; 18:1054-1059.

Losa GA, Castelli C. Nuclear patterns of human breast cancer cells during apoptosis: characterisation by fractal dimension and co-occurrence matrix statistics. Cell Tissue Res. 2005;322:257-267.

Published
2018/04/24
Section
Original Scientific Paper