THE ADOLESCENT BRAIN - CHANGES AND CHALLENGES OF DEVELOPMENT
Abstract
Adolescencija je period fizičkog i psihološkog razvoja, koji se odvija između detinjstva i perioda odraslog života. To je više prelazni razvojni period, nego što je izolovan trenutak u vremenu. Tradicionalna neurobiološka i kognitivna objašnjenja razvoja adolescenta nisu uspela da obrazlože promene u ponašanju koje se primećuju tokom adolescencije. Naučne studije su otkrile da se mijelogeneza nastavlja od detinjstva do zrelosti, u specifičnim neuronskim mrežama mozga. Sazrevanje adolescentnog mozga je pod uticajem nasleđa, okruženja i pola, i oni igraju presudnu ulogu u mijelinizaciji. Složenost razvoja sinapsi omogućava ljudima stvaranje i razumevanje kompleksnih misli, osećanja, uključujući i sposobnost rešavanja analogija u realnom svetu. I sama kompleksnost ovih veza, koje nastavljaju razvoj tokom adolescencije, može biti odgovorna kako za nezrelo i impulsivno ponašanje, tako i za neurobihejvioralno uzbuđenje tokom adolescentnog života.
References
Jean MT. Generation me: why today’s young Americans are more confident, assertive, and entitled—and more miserable than ever before. New York: Free Press, 2006.
Stevens R. Erik Erikson: An Introduction. New York, NY: St. Martin's Press, 1983. pp. 48–50.
Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, et al. Maturation of the adolescent brain. Neuropsychiatr Dis Treat. 2013; 9: 449–461
Jay NG, Jonathan B, Neal OJ, Castellanos FX, Hong L, Alex Z et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):861-863.
Giedd JN. Structural magnetic resonance imaging of the adolescent brain. Ann NY Acad Sci. 2004; 1021:77-85.
Casey BJ, Galvan A, Hare TA. Changes in cerebral functional organization during cognitive development. Curr Opin Neurobiol 2005; 15(2):239-244.
Frontline: Inside the Teenage Brain. Available from http://www.pbs.org/wgbh/pages/frontline/shows/teenbrain/
Giedd JN. The amazing teen brain. Sci Am. 2015; 312(6):32-37.
Blakemore SJ, Burnett S, Dahl RE. The role of puberty in the developing adolescent brain. Hum Brain Mapp. 2010; 31(6): 926–933.
Cahill I. Why sex matters for neuroscience. Nat Rev Neurosci. 2006; 7:477-484.
Casey BJ, Galvan A, Hare TA. Changes in cerebral functional organization during cognitive development. Curr Opin Neurobiol 2005; 15(2):239-244.
DR Dorn LD. Measuring puberty. J Adolesc Health. 2006; 39:625-626.
Schulz KM, Molenda-Figueira HA, Sisk CL. Back to the future: the reorganizational-activational hypothesis adapted to puberty and adolescence. Horm Behav. 2009;55:597-604.
Tamnes CK, Ostby Y, Fjell AM, Westlye LT, Due-Tonnessen P, Walhovd KB. Brain maturation in adolescence and young adulthood: regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex 2010; 20:534-548.
Whitaker KJ, Vértes PE, Romero-Garcia R, Váša F, Moutoussis M, Prabhu G et al. Adolescence is associated with gnomically patterned consolidation of the hubs of the human brain connectome. Proc Natl Acad Sci U S A. 2016;113(32):9105-9110.
Li K, Xu E. The role and the mechanism of gamma-aminobutyric acid during central nervous system development. Neurosci Bull. 2008; 24(3):195-200.
Crews F, He J, Hodge C. Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav. 2007 Feb;86(2):189-99.
Cunningham MG, Bhattacharyya S, Benes FM. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence. J Comp Neurol. 2002;453(2):116–130.
Andersen SL, Teicher MH. Delayed effects of early stress on hippocampal development. Neuropsychopharmacology. 2004;29(11):1988–1993.
Teicher MH, Andersen SL, Hostetter JC., Jr Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res. 1995;89(2):167–172.
Floresco SB, Tse MT. Dopaminergic regulation of inhibitory and excitatory transmission in the basolateral amygdala-prefrontal cortical pathway. J Neurosci. 2007;27(8):2045–2057.
Grace AA, Floresco SB, Goto Y, Lodge DJ. Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 2007;30(5):220–227.
Jackson ME, Frost AS, Moghaddam B. Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens. J Neurochem. 2001;78(4):920–923.
Rosenberg DR, Lewis DA. Postnatal maturation of the dopaminergic innervation of monkey prefrontal and motor cortices: a tyrosine hydroxylase immunohistochemically analysis. J Comp Neurol. 1995;358(3):383–400.
Gardener M, Steinberg L. Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: an experimental study. Dev Psych. 2005;41:625–635.
Steinberg L. Cognitive and affective development in adolescence. Trends Cogn Sci. 2005;9(2):69–74.
Killgore DS, Yurgelun-Todd DA. Cerebral correlates of amygdala responses during non-conscious perception of facial affect in adolescent and pre-adolescent children. Cogn Neurosci. 2010;1(1):33–43.
Wahlstrom D, Collins P, Whit T, Luciana M. Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn. 2010; 72(1):146-159.
Luders E, Thompson PM, Toga AW. The development of the corpus callosum in the healthy human brain. J Neurosci. 2010;30(33): 10985–10990.
Grimshaw GM, Adelstein A, Bryden MP, MacKinnon GE. First-language acquisition in adolescence: evidence for a critical period for verbal language development. Brain Lang. 1998;63:237–255.
PP Thompson PM, Giedd JN, Woods RP, MacDonald D, Evans AC, Toga AW. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature. 2000;404:190–193.
Szaflarski JP, Holland SK, Schmithorst VJ, Byars AW. fMRI study of language lateralization in children and adults. Hum Brain Mapp. 2006;27:202–212.
Gilmore JH, Schmitt JE, Knickmeyer RC, Smith JK, Lin W, Styner M et al. Genetic and environmental contributions to neonatal brain structure: a twin study. Hum Brain Mapp. 2010;31(8):1174-82
Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489-501.
Leinera HC, Leinera AL, Dowb RS. Cognitive and language functions of the human cerebellum. Elsevier Ltd., 1993.
Peper JS, van den Heuvel MP, Mandl RC, Hulshoff Pol HE, van Honk J. Sex steroids and connectivity in the human brain: a review of neuroimaging studies. Psychoneuroendocrinology. 2011;36(8):1101-1113.
Mueller SC, Mandell D, Leschek EW, Pine DS, Merke DP, Ernst M. Early hyperandrogenism affects the development of hippocampal function: Preliminary evidence from a functional magnetic resonance imaging study of boys with familial male precocious puberty. J Child Adolesc Psychopharmacol. 2009;19:41–50.
Ernst M, Maheu FS, Schroth E, Hardin J, Golan LG, Cameron J et al. Amygdala function in adolescents with congenital adrenal hyperplasia: A model for the study of early steroid abnormalities. Neuropsychiology