EXTENDED SPECTRUM BETA-LACTAMASE (ESBL) PRODUCING ENTEROBACTERALES: CLASSIFICATION AND RESISTANCE GENETIC BACKGROUND

  • Marija Milić Univerzitet u Beogradu, Medicinski fakultet, Doktorske akademske studije, Mikrobi i infekcija
  • Vera Mijač Institut za mikrobiologiju i imunologiju, Medicinski fakultet Univerziteta u Beogradu

Abstract


Beta-lactam antibiotics are one of the most important ones in clinical practice and most commonly prescribed drugs. There are few possible mechanisms of beta-lactam resistance. Beta-lactamase opens the β-lactam ring, deactivating the molecule’s antibacterial properties, and among them, Extended-spectrum beta-lactamases (ESBL) are the most important. Antibiotic resistance gene can both be located on chromosome, or on plasmids. Betalactamases share the ability to hydrolyse penicillin, cephalosporin and monobactam, but not carbapenems and cephamycin, and yet, they are inhibited by clavulanic acid and/or tazobactam. Far most important in clinical practice are CTX-M enzymes, followed by TEM and SHV. Other less widespread ones are VEB, PER, GES, TLE, IBC, BES, BEL and others. Over the last years the presence of antibiotic resistant bacteria has been shown outside the clinical environment, including water, soil and food producing animals. If this problem persists in all over the world, carbapenems might be the first line antibiotics. Considering the present situation, antimicrobial resistance could be one of the greatest challenges in modern medicine, and it is important to ensure that antibiotics are prescribed only when needed.

References

Spratt BG, Cromie KD. Penicillin-Binding Proteins of Gram-Negative Bacteria. Clinical Infectious Diseases1988;10(4):699-711. doi: 10.1093/clinids/10.4.699

Wilke MS, Lovering AL, Strynadka NC. β-Lactam antibiotic resistance: a current structural perspective. Current Opinion in Microbiology 2005;8(5):525-533. doi: 10.1016/j.mib.2005.08.016

Tomasz A. Antibiotic Resistance in Streptococcus pneumoniae. Clinical Infectious Diseases 1997;24(Supplement_1):85-88. doi: 10.1093/clinids/24.Supplement_1.S85

Bush K, Jacoby GA. Updated Functional Classification of Lactamases. Antimicrobial Agents and Chemotherapy 2010;54(3):969-976. doi: 10.1128/aac.01009-09

Ambler RP. The Structure of β-lactamases. Philosophical Transactions of the Royal Society B: Biological Sciences 1980;289(1036):321-331. doi: 10.1098/rstb.1980.0049

Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy 1995;39(6):1211-1233. doi: 10.1128/aac.39.6.1211

Jaurin B, Grundstrom T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proceedings of the National Academy of Sciences 1981;78(8):4897-4901. doi: 10.1073/pnas.78.8.4897

Huovinen S, Huovinen P, Jacoby GA. Detection of plasmid-mediated beta-lactamases with DNAprobes. Antimicrobial Agents and Chemotherapy 1988;32(2):175-179. doi: 10.1128/aac.32.2.175

Paterson DL, Bonomo RA. Extended-Spectrum β-Lactamases: a Clinical Update. Clinical Microbiology Reviews 2005;18(4):657-686. doi: 10.1128/cmr.18.4.657-686.2005

EUCAST, 2017, Resistance mechanisms dostupno na: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf

Jarlier V, Nicolas M-, Fournier G, Philippon A. Extended Broad-Spectrum β-Lactamases Conferring Transferable Resistance to Newer β-Lactam Agents in Enterobacteriaceae: Hospital Prevalence and Susceptibility Patterns. Clinical Infectious Diseases 1988;10(4):867-878. doi: 10.1093/clinids/10.4.867

Pitton JS. Mechanisms of bacterial resistance to antibiotics. Ergeb Physiol. 1972; 65:15-93.

Livermore DM. Defining an extended-spectrum β-lactamase. Clinical Microbiology and Infection 2008;14:3-10. doi: 10.1111/j.1469-0691.2007.01857.x

Ghafourian S, Sadeghifard N, Soheili S, Sekawi Z. Extended Spectrum Beta-lactamases: Definition, Classification and Epidemiology.Curr Issues Mol Biol. 2015;17:11-21.

Giske CG, Sundsfjord AS, Kahlmeter G, Woodford N, Nordmann P, Paterson DL, Walsh TR. Redefining extended-spectrum β-lactamases: balancing science and clinical need-authors’ response. Journal of Antimicrobial Chemotherapy 2009;64(1):213-215. doi: 10.1093/jac/dkp143

EUCAST 2018 dostupno na: https://www.researchgate.net/publication/236600303_Consequences_of_revised_CLSI_and_EUCAST_guidelines_for_antibiotic_susceptibility_patterns_of_ESBL-_and_AmpC_-lactamase-producing_clinical_Enterobacteriaceae_isolates

Datta N, Kontomichalou P. Penicillinase Synthesis Controlled By Infectious R Factors In Enterobacteriaceae. Nature 1965;208(5007):239-241. doi: 10.1038/208239a0

Lahey, ß-Lactamase Classification and Amino Acid Sequences for TEM, SHV and OXA ExtendedSpectrum and Inhibitor Resistant Enzymes dostupno na: https://www.lahey.org/Studies/

Liakopoulos A, Mevius D, Ceccarelli D. A Review of SHV Extended-Spectrum β-Lactamases: Neglected Yet Ubiquitous. Frontiers in Microbiology 2016;7 doi: 10.3389/fmicb.2016.01374

Kassis-Chikhani N, Frangeul L, Drieux L, Sengelin C, Jarlier V, Brisse S, Decré D. Complete Nucleotide Sequence of the First KPC-2- and SHV-12-Encoding IncX Plasmid, pKpS90, from Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy 2012;57(1):618-620. doi: 10.1128/aac.01712-12

Sonnevend A, Al BA, Ghazawi A, Hashmey R, Girgis S, Hamadeh MB, Pal T. Emergence and spread of NDM-1 producer Enterobacteriaceae with contribution of IncX3 plasmids in the United Arab Emirates. Journal of Medical Microbiology 2013;62(Pt_7):1044-1050. doi: 10.1099/jmm.0.059014-0

Partridge SR, Ginn AN, Wiklendt AM, Ellem J, Wong JSJ, Ingram P, Iredell JR. Emergence of blaKPC carbapenemase genes in Australia. International Journal of Antimicrobial Agents 2015;45(2):130-136. doi: 10.1016/j.ijantimicag.2014.10.006

Aung MS, San N, Maw WW, San T, Urushibara N, Kawaguchiya M, Kobayashi N. Prevalence of ExtendedSpectrum Beta-Lactamase and Carbapenemase Genes in Clinical Isolates of Escherichia coli in Myanmar: Dominance of bla NDM-5 and Emergence. Microbial Drug Resistance 2018;24(9):1333-1344. doi: 10.1089/mdr.2017.0387

Bauernfeind A, Schweighart S, Grimm H. Eine neue plasmidische Cefotaximase in einem Escherichia coli Stamm. Escherichia coli. Infection 1990;18(5):294-298. doi: 10.1007/bf01647010

Bauernfeind A, Holley M, Jungwirth R, Mangold P, Röhnisch T, Schweighart S, Goldberg M. Neue plasmidische Cefotaximase von Patienten mit Salmonella typhimurium-Infektion. Infection 1992;20(3):158- 163. doi: 10.1007/bf01704610

Rossolini GM, D’Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum β-lactamases. Clinical Microbiology and Infection 2008;14:33-41. doi: 10.1111/j.1469-0691.2007.01867.x

Bonnet R. Growing Group of Extended-Spectrum β-Lactamases: the CTX-M Enzymes. Antimicrobial Agents and Chemotherapy 2004;48(1):1-14. doi: 10.1128/aac.48.1.1-14.2004

Schaufler K, Semmler T, Pickard DJ, de Toro M, de la Cruz F, Wieler LH, Guenther S. Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages. Frontiers in Microbiology 2016;7 doi: 10.3389/fmicb.2016.00336

Cantón R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, Coque TM. Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Europe. Clinical Microbiology and Infection 2008;14:144-153. doi: 10.1111/j.1469-0691.2007.01850.x

Medeiros AA. Evolution and Dissemination of β-Lactamases Accelerated by Generations of β-Lactam Antibiotics. Clinical Infectious Diseases 1997;24(Supplement_1) doi: 10.1093/clinids/24. Supplement_1.S19

Livermore DM. beta-Lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews 1995;8(4):557-584. doi: 10.1128/cmr.8.4.557

Bois SKD, Marriott MS, Amyes SGB. TEM- and SHVderived extended-spectrum β-lactamases: relationship between selection, structure and function. Journal of Antimicrobial Chemotherapy 1995;35(1):7-22. doi: 10.1093/jac/35.1.7

Ghafourian S1, Sadeghifard N, Soheili S, Sekawi Z. Extended Spectrum Beta-lactamases: Definition, Classification and Epidemiology. Curr Issues Mol Biol. 2015; 17:11-21.

Villa L, Pezzella C, Tosini F, Visca P, Petrucca A, Carattoli A. Multiple-Antibiotic Resistance Mediated by Structurally Related IncL/M Plasmids Carrying an Extended-Spectrum β-Lactamase Gene and a Class 1 Integron. Antimicrobial Agents and Chemotherapy 2000;44(10):2911-2914. doi: 10.1128/ aac.44.10.2911-2914.2000

Barthélémy M, Péduzzi J, Ben YH, Labia R. Single amino acid substitution between SHV-1 β-lactamase and cefotaxime-hydrolyzing SHV-2 enzyme. FEBS Letters 2001;231(1):217-220. doi: 10.1016/0014-5793(88)80734-8

Haeggman S, Löfdahl S, Burman LG. An allelic variant of the chromosomal gene for class A beta-lactamase K2, specific for Klebsiella pneumoniae, is the ancestor of SHV-1. Antimicrobial Agents and Chemotherapy 1997;41(12):2705-2709. doi: 10.1128/aac.41.12.2705

Poirel L, Decousser J-, Nordmann P. Insertion Sequence ISEcp1B Is Involved in Expression and Mobilization of a blaCTX-M β-Lactamase Gene. Antimicrobial Agents and Chemotherapy 2003;47(9):2938-2945. doi: 10.1128/aac.47.9.2938-2945.2003

Jacoby GA, Munoz-Price LS. The New β-Lactamases. New England Journal of Medicine 2005;352(4):380-391. doi: 10.1056/nejmra041359

Rodriguez MM, Power P, Radice M, Vay C, Famiglietti A, Galleni M, Gutkind G. ChromosomeEncoded CTX-M-3 from Kluyvera ascorbata: a Possible Origin of Plasmid-Borne CTX-M-1-Derived Cefotaximases. Antimicrobial Agents and Chemotherapy 2004;48(12):4895-4897. doi: 10.1128/aac.48.12.4895-4897.2004

Alonso A, Rojo F, Martinez JL. Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environmental Microbiology 1999;1(5):421-430. doi: 10.1046/j.1462-2920.1999.00052.x

Woerther P-, Burdet C, Chachaty E, Andremont A. Trends in Human Fecal Carriage of ExtendedSpectrum β-Lactamases in the Community: Toward the Globalization of CTX-M. Clinical Microbiology Reviews 2013;26(4):744-758. doi: 10.1128/cmr.00023-13

Crivaro V, Bagattini M, Salza MF, Raimondi F, Rossano F, Triassi M, Zarrilli R. Risk factors for extended-spectrum β-lactamase-producing Serratia marcescensand Klebsiella pneumoniae acquisition in a neonatal intensive care unit. Journal of Hospital Infection 2007;67(2):135-141. doi: 10.1016/j.jhin.2007.07.026

Rettedal S, Löhr IH, Natås O, Sundsfjord A, Øymar K. Risk factors for acquisition of CTX-M-15 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae during an outbreak in a neonatal intensive care unit in Norway. Scandinavian Journal of Infectious Diseases 2013;45(1):54-58. doi: 10.3109/00365548.2012.713116

Shakil S, Akram M, Ali SM, Khan AU. Acquisition of extended-spectrum β-lactamase producing Escherichia coli strains in male and female infants admitted to a neonatal intensive care unit: molecular epidemiology and analysis of risk factors. Journal of Medical Microbiology 2010;59(8):948-954. doi: 10.1099/jmm.0.020214-0

Vijayakanthi N, Bahl D, Kaur N, Maria A, Dubey NK. Frequency and characteristics of infections caused by extended-spectrum beta-lactamase-producing organisms in neonates: a prospective cohort study. BioMed research international. 2013;2013.

Denkel LA, Schwab F, Kola A, Leistner R, Garten L, von Weizsäcker K, Geffers C, Gastmeier P, Piening B. The mother as most important risk factor for colonization of very low birth weight (VLBW) infants with extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E). Journal of Antimicrobial Chemotherapy. 2014 Apr 11;69(8):2230-7.

Published
2019/06/30
Section
Mini pregledni članak