THE IMPORTANCE OF POLYMORPHISMS OF REGULATORY AND CATALYTIC ANTIOXIDANT PROTEINS IN CHRONIC KIDNEY DISEASE

  • Djurdja Jerotic Institut za medicinsku i kliničku biohemiju, Medicinski fakultet u Beogradu
Keywords: CKD, Nrf2, SOD2, GPX1, gene polymorphisms

Abstract


Both excessive production of reactive oxygen species (ROS) and impaired antioxidant function are found in patients with chronic kidney disease (CKD). Therefore, individual susceptibility towards CKD can be induced by functional variations of genes encoding antioxidant regulatory (nuclear factor erythroid 2–related factor 2 (Nrf2)) and catalytic (superoxide dismutase (SOD2) and glutathione peroxidase (GPX1)) proteins. Several types of single nucleotide polymorphisms (SNPs) have been found within the genes encoding these proteins, with Nrf2(-617C/A), SOD2(Ala16Val) and GPX1(Pro198Leu) conferring impaired catalytic activity. The most unexplored gene polymorphism in CKD susceptibility, progression and survival, with only two original studies published, is the Nrf2(-617C/A) polymorphism. The results of these studies showed that there was no individual impact of this polymorphism on the susceptibility towards end stage renal disease (ESRD) development, oxidative phenotype and mortality. However, Nrf2 had a significant role in ESRD risk and survival when combined with other antioxidant genes. The results regarding the impact of SOD2(Ala16Val) and GPX1(Pro198Leu) polymorphisms on either CKD or ESRD are still inconclusive. Namely, some studies showed that patients having variant SOD2(Val) or GPX1(Leu) allele were at increased risk of CKD development and progression, while other studies reported only weak or no association between these polymorphisms and CKD. Surprisingly, the only study that reported an association of GPX1 polymorphism on overall/cardiovascular survival in ESRD patients showed a significant impact of low activity GPX1(Leu/Leu) genotype on better survival. In this review, we comprehensively and critically appraise the literature on these polymorphisms related to oxidative stress in CKD patients in order to identify gaps and provide recommendations for further clinical research and translation. New developments in the field of antioxidant polymorphisms in CKD patients could lead to better stratification of CKD patients based on a prognostic antioxidant gene panel and provide a more personalised medicine approach for the need of antiox­idant therapy in these patients.

References

1. Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco ALM, De Jong PE, et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1–150.
2. Vajdic CM, McDonald SP, McCredie MRE, Van Leeuwen MT, Stewart JH, Law M, et al. Cancer incidence before and after kidney transplantation. Jama. 2006;296(23):2823–31.
3. Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17(7):2034–47.
4. Thompson S, James M, Wiebe N, Hemmelgarn B, Manns B, Klarenbach S, et al. Cause of death in patients with reduced kidney function. J Am Soc Nephrol. 2015;26(10):2504–11.
5. Fiorillo C, Oliviero C, Rizzuti G, Nediani C, Pacini A, Nassi P. Oxidative stress and antioxidant defenses in renal patients receiving regular haemodialysis. Clin Chem Lab Med. 1998;36(3):149–53.
6. Vaziri ND. Oxidative stress in uremia: nature, mechanisms, and potential consequences. In: Seminars in nephrology. Elsevier; 2004. p. 469–73.
7. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62(5):1524–38.
8. Oberg BP, Mcmenamin E, Lucas FL, Mcmonagle E, Morrow J, Ikizler TA, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004 Mar;65(3):1009–16.
9. Vaziri ND, Oveisi F, Ding Y. Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension. Kidney Int. 1998;53(6):1748–54.
10. Sies H. Oxidative stress: from basic research to clinical application. Am J Med. 1991;91(3):S31–8.
11. Sies H. Oxidative stress: eustress and distress in redox homeostasis. In: Stress: physiology, biochemistry, and pathology. Elsevier; 2019. p. 153–63.
12. Massy ZA, Ceballos I, Chadefaux-Vekemens B, Nguyen-Khoa T, Descamps-Latscha B, Drüeke TB, et al. Homocyst (e) ine, oxidative stress, and endothelium function in uremic patients. Kidney Int. 2001;59(S78):S243.
13. Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal. 2007;9(12):2277–94.
14. Chin MP, Reisman SA, Bakris GL, O’grady M, Linde PG, McCullough PA, et al. Mechanisms contributing to adverse cardiovascular events in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease treated with bardoxolone methyl. Am J Nephrol. 2014;39(6):499–508.
15. Ward RA, McLeish KR. Polymorphonuclear leukocyte oxidative burst is enhanced in patients with chronic renal insufficiency. J Am Soc Nephrol. 1995;5(9):1697–702.
16. Galvan DL, Green NH, Danesh FR. The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 2017;92(5):1051–7.
17. Laher I. Systems biology of free radicals and antioxidants. Springer; 2014.
18. Nguyen AT, Lethias C, Zingraff J, Herbelin A, Naret C, Descamps-Latscha B. Hemodialysis membrane-induced activation of phagocyte oxidative metabolism detected in vivo and in vitro within microamounts of whole blood. Kidney Int. 1985;28(2):158–67.
19. Tbahriti HF, Kaddous A, Bouchenak M, Mekki K. Effect of different stages of chronic kidney disease and renal replacement therapies on oxidant-antioxidant balance in uremic patients. Biochem Res Int. 2013;2013.
20. Girelli D, Olivieri O, Stanzial AM, Azzini M, Lupo A, Bernich P, et al. Low platelet glutathione peroxidase activity and serum selenium concentration in patients with chronic renal failure: relations to dialysis treatments, diet and cardiovascular complications. Clin Sci. 1993;84(6):611–7.
21. Ceballos-Picot I, Witko-Sarsat V, Merad-Boudia M, Nguyen AT, Thévenin M, Jaudon MC, et al. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic Biol Med. 1996;21(6):845–53.
22. Sung C-C, Hsu Y-C, Chen C-C, Lin Y-F, Wu C-C. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. Oxid Med Cell Longev. 2013;2013.
23. Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol. 2019;34(6):975–91.
24. Ward RA, Ouseph R, Mcleish KR. Effects of high-flux hemodialysis on oxidant stress. Kidney Int. 2003;63(1):353–9.
25. Jankowska M, Rutkowski B, Dębska-Ślizień A. Vitamins and microelement bioavailability in different stages of chronic kidney disease. Nutrients. 2017;9(3):282.
26. Davies KJ. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987;262(20):9895–901.
27. Wolff SP, Garner A, Dean RT. Free radicals, lipids and protein degradation. Trends Biochem Sci. 1986;11(1):27–31.
28. Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science (80- ). 1988;240(4857):1302–9.
29. Mimić-Oka J, Savić-Radojević A, Plješa-Ercegovac M, Opačić M, Simić T, Dimković N, et al. Evaluation of oxidative stress after repeated intravenous iron supplementation. Ren Fail. 2005;27(3):345–51.
30. Choi B, Kang K-S, Kwak M-K. Effect of redox modulating NRF2 activators on chronic kidney disease. Molecules. 2014;19(8):12727–59.
31. Tucker PS, Dalbo VJ, Han T, Kingsley MI. Clinical and research markers of oxidative stress in chronic kidney disease. Biomarkers. 2013;18(2):103–15.
32. Grieve DJ, Pljesa-Ercegovac M, Savic-Radojevic A, Damjanovic T, Dimkovic N, McClements L, et al. Research Article GSTM1 Modulates Expression of Endothelial Adhesion Molecules in Uremic Milieu. 2021;
33. Marzec JM, Christie JD, Reddy SP, Jedlicka AE, Vuong H, Lanken PN, et al. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J. 2007;21(9):2237–46.
34. Sutton A, Khoury H, Prip-Buus C, Cepanec C, Pessayre D, Degoul F. The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenet Genomics. 2003;13(3):145–57.
35. Zheikova T V, Golubenko M V, Buikin S V, Botkina OY, Makeeva OA, Lezhnev AA, et al. Glutathione peroxidase 1 (GPX1) single nucleotide polymorphism Pro198→ Leu: Association with life span and coronary artery disease. Mol Biol. 2012;46(3):433–7.
36. Hamanishi T, Furuta H, Kato H, Doi A, Tamai M, Shimomura H, et al. Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes. 2004;53(9):2455–60.
37. Li W, Khor TO, Xu C, Shen G, Jeong W-S, Yu S, et al. Activation of Nrf2-antioxidant signaling attenuates NFκB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76(11):1485–9.
38. Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29(17):1727–45.
39. Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul. 2006;46:113–40.
40. Ihoriya C, Satoh M, Komai N, Sasaki T, Kashihara N. Nuclear factor erythroid 2-related factor 2 is activated by rosuvastatin via p21cip1 upregulation in endothelial cells. Biochem Pharmacol (Los Angel). 2014;4(157):501–2167.
41. Stockler-Pinto MB, Fouque D, Soulage CO, Croze M, Mafra D. Indoxyl sulfate and p-cresyl sulfate in chronic kidney disease. Could these toxins modulate the antioxidant Nrf2-Keap1 pathway? J Ren Nutr. 2014;24(5):286–91.
42. Yamamoto T, Yoh K, Kobayashi A, Ishii Y, Kure S, Koyama A, et al. Identification of polymorphisms in the promoter region of the human NRF2 gene. Biochem Biophys Res Commun. 2004;321(1):72–9.
43. Nishinaka T, Ichijo Y, Ito M, Kimura M, Katsuyama M, Iwata K, et al. Curcumin activates human glutathione S-transferase P1 expression through antioxidant response element. Toxicol Lett. 2007;170(3):238–47.
44. Zhang DD, Lo S-C, Sun Z, Habib GM, Lieberman MW, Hannink M. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J Biol Chem. 2005;280(34):30091–9.
45. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13(1):76–86.
46. Kim HJ, Vaziri ND. Contribution of impaired Nrf2-Keap1 pathway to oxidative stress and inflammation in chronic renal failure. Am J Physiol Physiol. 2010;298(3):F662–71.
47. Surh Y-J, Kundu JK, Na H-K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008;74(13):1526–39.
48. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89–116.
49. Yoh K, Hirayama A, Ishizaki K, Yamada A, Takeuchi M, Yamagishi S, et al. Hyperglycemia induces oxidative and nitrosative stress and increases renal functional impairment in Nrf2‐deficient mice. Genes to Cells. 2008;13(11):1159–70.
50. Jiang T, Huang Z, Lin Y, Zhang Z, Fang D, Zhang DD. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy. Diabetes. 2010;59(4):850–60.
51. Jiang T, Tian F, Zheng H, Whitman SA, Lin Y, Zhang Z, et al. Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-κB-mediated inflammatory response. Kidney Int. 2014;85(2):333–43.
52. Yoh K, Itoh K, Enomoto A, Hirayama A, Yamaguchi N, Kobayashi M, et al. Nrf2-deficient female mice develop lupus-like autoimmune nephritis. Kidney Int. 2001;60(4):1343–53.
53. Liu M, Grigoryev DN, Crow MT, Haas M, Yamamoto M, Reddy SP, et al. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. Kidney Int. 2009;76(3):277–85.
54. Jerotic D, Matic M, Suvakov S, Vucicevic K, Damjanovic T, Savic-Radojevic A, et al. Association of Nrf2, SOD2 and GPX1 Polymorphisms with Biomarkers of Oxidative Distress and Survival in End-Stage Renal Disease Patients. Toxins (Basel). 2019;11(7):431.
55. Cho H-Y, Marzec J, Kleeberger SR. Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med. 2015;88:362–72.
56. Shimoyama Y, Mitsuda Y, Tsuruta Y, Hamajima N, Niwa T. Polymorphism of Nrf2, an antioxidative gene, is associated with blood pressure and cardiovascular mortality in hemodialysis patients. Int J Med Sci. 2014;11(7):726.
57. Cho H-Y. Genomic structure and variation of nuclear factor (erythroid-derived 2)-like 2. Oxid Med Cell Longev. 2013;2013.
58. Marczak ED, Marzec J, Zeldin DC, Kleeberger SR, Brown NJ, Pretorius M, et al. Polymorphisms in the transcription factor NRF2 and forearm vasodilator responses in humans. Pharmacogenet Genomics. 2012;22(8):620.
59. Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365(4):327–36.
60. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med. 2002;33(3):337–49.
61. Crawford A, Fassett RG, Coombes JS, Kunde DA, Ahuja KDK, Robertson IK, et al. Glutathione peroxidase, superoxide dismutase and catalase genotypes and activities and the progression of chronic kidney disease. Nephrol Dial Transplant. 2011;26(9):2806–13.
62. Nozik-Grayck E, Suliman HB, Piantadosi CA. Extracellular superoxide dismutase. Int J Biochem Cell Biol. 2005;37(12):2466–71.
63. Azadmanesh J, Borgstahl GEO. A review of the catalytic mechanism of human manganese superoxide dismutase. Antioxidants. 2018;7(2):25.
64. Crawford A, Fassett RG, Geraghty DP, Kunde DA, Ball MJ, Robertson IK, et al. Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene. 2012;501(2):89–103.
65. Rosenblum JS, Gilula NB, Lerner RA. On signal sequence polymorphisms and diseases of distribution. Proc Natl Acad Sci. 1996;93(9):4471–3.
66. Crawford A. Influence of antioxidant genotype and antioxidant status on progression of chronic kidney disease. University of Tasmania; 2010.
67. Abbasi M, Daneshpour MS, Hedayati M, Mottaghi A, Pourvali K, Azizi F. The relationship between MnSOD Val16Ala gene polymorphism and the level of serum total antioxidant capacity with the risk of chronic kidney disease in type 2 diabetic patients: a nested case-control study in the Tehran lipid glucose study. Nutr Metab (Lond). 2018;15(1):25.
68. Möllsten A, Marklund SL, Wessman M, Svensson M, Forsblom C, Parkkonen M, et al. A functional polymorphism in the manganese superoxide dismutase gene and diabetic nephropathy. Diabetes. 2007;56(1):265–9.
69. Möllsten A, Jorsal A, Lajer M, Vionnet N, Tarnow L. The V16A polymorphism in SOD2 is associated with increased risk of diabetic nephropathy and cardiovascular disease in type 1 diabetes. Diabetologia. 2009;52(12):2590–3.
70. Mohammedi K, Bellili-Muñoz N, Driss F, Roussel R, Seta N, Fumeron F, et al. Manganese superoxide dismutase (SOD2) polymorphisms, plasma advanced oxidation protein products (AOPP) concentration and risk of kidney complications in subjects with type 1 diabetes. PLoS One. 2014;9(5):e96916.
71. Nomiyama T, Tanaka Y, Piao L, Nagasaka K, Sakai K, Ogihara T, et al. The polymorphism of manganese superoxide dismutase is associated with diabetic nephropathy in Japanese type 2 diabetic patients. J Hum Genet. 2003;48(3):138.
72. Chao C-T, Chen Y-C, Chiang C-K, Huang J-W, Fang C-C, Chang C-C, et al. Interplay between superoxide dismutase, glutathione peroxidase, and peroxisome proliferator activated receptor gamma polymorphisms on the risk of end-stage renal disease among Han Chinese patients. Oxid Med Cell Longev. 2016;2016.
73. Corredor Z, da Silva Filho MI, Rodríguez-Ribera L, Velázquez A, Hernández A, Catalano C, et al. Genetic Variants Associated with Chronic Kidney Disease in a Spanish Population. Sci Rep. 2020;10(1):1–11.
74. Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15(7):1957–97.
75. Crawford A, Fassett RG, Coombes JS, Kunde DA, Ahuja KDK, Robertson IK, et al. Relationship between antioxidant enzyme genotype and activity and kidney function: a case-control study. Clin Nephrol. 2012;78(2):135–44.
76. Mimić-Oka J, Simić T, Djukanović L, Reljić Z, Davicević Z. Alteration in plasma antioxidant capacity in various degrees of chronic renal failure. Clin Nephrol. 1999;51(4):233–41.
77. Zotova E V, Savost’ianov K V, Chistiakov DA, Bursa TR, Galeev I V, Strokov IA, et al. Search for the association of polymorphic markers for genes coding for antioxidant defense enzymes, with development of diabetic polyneuropathies in patients with type 1 diabetes mellitus. Mol Biol (Mosk). 2004;38(2):244–9.
78. Tang N-P, Wang L-S, Yang L, Gu H-J, Sun Q-M, Cong R-H, et al. Genetic variant in glutathione peroxidase 1 gene is associated with an increased risk of coronary artery disease in a Chinese population. Clin Chim acta. 2008;395(1–2):89–93.
79. Elelaimy IA, Shehata EL, Abdel-Hamid MA. Study the association between glutathione peroxidase-1 gene in patients with hepatocellular carcinoma in Egypt. J Biosci Appl Res. 2016;2(6):346–51.
80. Hu YJ, Diamond AM. Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res. 2003;63(12):3347–51.
81. Mohammedi K, Patente TA, Bellili-Muñoz N, Driss F, Le Nagard H, Fumeron F, et al. Glutathione peroxidase-1 gene (GPX1) variants, oxidative stress and risk of kidney complications in people with type 1 diabetes. Metabolism. 2016;65(2):12–9.
82. Soerensen M, Christensen K, Stevnsner T, Christiansen L. The Mn-superoxide dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single nucleotide polymorphism rs1050450 are associated with aging and longevity in the oldest old. Mech Ageing Dev. 2009;130(5):308–14.
83. Kato K, Oguri M, Kato N, Hibino T, Yajima K, Yoshida T, et al. Assessment of genetic risk factors for thoracic aortic aneurysm in hypertensive patients. Am J Hypertens. 2008;21(9):1023–7.
Published
2021/04/26
Section
Mini pregledni članak