The importance of smell and taste in everyday life: dysfunction in COVID-19 patients
Abstract
Human-to-human transmission of coronavirus (SARS-CoV-2), COVID-19 (coronavirus disease 2019), is characterized by a pandemic exponential rate and the patients with mild to moderate infection have odor and taste problems that represent a new atypical disease. A new viral syndrome of acute anosmia or “new loss of taste or smell” without rhinitis and nasal obstruction or rhinorrhea has been placed on the list of symptoms that may occur 2 to 14 days after exposure to the COVID-19 virus. Two months after declaring the COVID-19 pandemic in May 2020, the World Health Organization (WHO) has recognized changes in the perception of smell and taste as symptoms of this disease. The described cardinal symptoms are more common in the population of young patients and able-bodied people which facilitates the spread of disease. Significantly higher prevalence of patients with COVID-19 who have lost their taste and smell is treated at home (rare hospitalization), lung damage is rare, as well as oxygen therapy with mild lymphopenia. Different scenarios of SARS-CoV-2 viral infection can be assumed: it is probable that the virus does not enter directly into olfactory sensory neurons (they do not have ACE2 and TMPRSS2 receptors), but it is localized to vascular pericytes and causes inflammatory processes and vasculopathies. On the other hand, direct infection of non-neuronal cells which contain said receptors is possible. Those are specific cell types in the olfactory epithelium such as sustentacular, horizontal basal cells as well as Bowman's glands which leads to massive degeneration and loss of olfactory neurons. The sense of taste is a complex sensation that is the result of the interaction of smell, taste, temperature and texture of food. The virus damages cranial nerves, epithelial receptors and blood vessels, leading to taste damage (ageusia or dysgeusia).
A multidisciplinary approach with epidemiological, clinical and basic research is needed to elucidate the mechanism of sensorineural odor and taste loss caused by coronavirus.
References
Altman J. Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J. Comp. Neurol. 1969 Jul;136(3):269–93.
Arguedas D, Langdon R, Stevenson R. Neuropsychological Characteristics Associated with Olfactory Hallucinations in Schizophrenia. J. Int. Neuropsychol. Soc. 2012 Sep;18(5):799–808.
Attems J, Walker L, Jellinger KA. Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol. (Berl.). 2014 Apr;127(4):459–75.
Beltrán‐Corbellini Á, Chico‐García JL, Martínez‐Poles J, Rodríguez‐Jorge F, Natera‐Villalba E, Gómez‐Corral J, et al. Acute‐onset smell and taste disorders in the context of COVID‐19: a pilot multicentre polymerase chain reaction based case–control study. Eur. J. Neurol. 2020 Sep;27(9):1738–41.
Bénézit F, Le Turnier P, Declerck C, Paillé C, Revest M, Dubée V, et al. Utility of hyposmia and hypogeusia for the diagnosis of COVID-19. Lancet Infect. Dis. 2020 Sep;20(9):1014–5.
Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chem. Neurosci. 2020 Jun 3;11(11):1555–62.
Boesveldt S, Postma EM, Boak D, Welge-Luessen A, Schöpf V, Mainland JD, et al. Anosmia—A Clinical Review. Chem. Senses. 2017 Sep 1;42(7):513–23.
Bombardini T, Picano E. Angiotensin-Converting Enzyme 2 as the Molecular Bridge Between Epidemiologic and Clinical Features of COVID-19. Can. J. Cardiol. 2020 May;36(5):784.e1-784.e2.
Brandão Neto D, Fornazieri MA, Dib C, Di Francesco RC, Doty RL, Voegels RL, et al. Chemosensory Dysfunction in COVID-19: Prevalences, Recovery Rates, and Clinical Associations on a Large Brazilian Sample. Otolaryngol. Neck Surg. 2021 Mar;164(3):512–8.
Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020 Jul 31;6(31):eabc5801.
Brattoli M, De Gennaro G, De Pinto V, Demarinis Loiotile A, Lovascio S, Penza M. Odour Detection Methods: Olfactometry and Chemical Sensors. Sensors. 2011 May 16;11(5):5290–322.
Buck L, Axel R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell. 1991 Apr;65(1):175–87.
Buck LB. The Molecular Architecture of Odor and Pheromone Sensing in Mammals. Cell. 2000 Mar;100(6):611–8.
Bushdid C, Magnasco MO, Vosshall LB, Keller A. Humans Can Discriminate More than 1 Trillion Olfactory Stimuli. Science. 2014 Mar 21;343(6177):1370–2.
de Castro F. Wiring olfaction: the cellular and molecular mechanisms that guide the development of synaptic connections from the nose to the cortex. Front. Neurosci. [Internet]. 2009 [cited 2021 Jul 1]; Available from: http://journal.frontiersin.org/article/10.3389/neuro.22.004.2009/abstract
Castro F de, Hu L, Drabkin H, Sotelo C, Chédotal A. Chemoattraction and Chemorepulsion of Olfactory Bulb Axons by Different Secreted Semaphorins. J. Neurosci. 1999 Jun 1;19(11):4428–36.
Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan M, et al. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur. Respir. J. 2020 Sep;56(3):2001948.
Choi R, Goldstein BJ. Olfactory epithelium: Cells, clinical disorders, and insights from an adult stem cell niche: Olfactory Maintenance. Laryngoscope Investig. Otolaryngol. 2018 Feb;3(1):35–42.
Cooper KW, Brann DH, Farruggia MC, Bhutani S, Pellegrino R, Tsukahara T, et al. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron. 2020 Jul;107(2):219–33.
Dahlslett SB, Goektas O, Schmidt F, Harms L, Olze H, Fleiner F. Psychophysiological and electrophysiological testing of olfactory and gustatory function in patients with multiple sclerosis. Eur. Arch. Otorhinolaryngol. 2012 Apr;269(4):1163–9.
Doty RL. Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol. 2017 Jun;16(6):478–88.
Eliezer M, Hautefort C, Hamel A-L, Verillaud B, Herman P, Houdart E, et al. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngol. Neck Surg. 2020 Jul 1;146(7):674.
Feinstein P, Mombaerts P. A Contextual Model for Axonal Sorting into Glomeruli in the Mouse Olfactory System. Cell. 2004 Jun;117(6):817–31.
Gallarda BW, Lledo P-M. Adult neurogenesis in the olfactory system and neurodegenerative disease. Curr. Mol. Med. 2012 Dec;12(10):1253–60.
Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, et al. Self-reported Olfactory and Taste Disorders in Patients With Severe Acute Respiratory Coronavirus 2 Infection: A Cross-sectional Study. Clin. Infect. Dis. 2020 Jul 28;71(15):889–90.
Godoy M, Voegels R, Pinna F, Imamura R, Farfel J. Olfaction in Neurologic and Neurodegenerative Diseases: A Literature Review. Int. Arch. Otorhinolaryngol. 2014 Nov 14;19(02):176–9.
Good KP, Sullivan RL. Olfactory function in psychotic disorders: Insights from neuroimaging studies. World J. Psychiatry. 2015;5(2):210.
Gori A, Leone F, Loffredo L, Cinicola BL, Brindisi G, De Castro G, et al. COVID-19-Related Anosmia: The Olfactory Pathway Hypothesis and Early Intervention. Front. Neurol. 2020 Sep 10;11:956.
Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020 Apr 30;382(18):1708–20.
Hamamichi R, Asano-Miyoshi M, Emori Y. Taste bud contains both short-lived and long-lived cell populations. Neuroscience. 2006;141(4):2129–38.
Hannum ME, Ramirez VA, Lipson SJ, Herriman RD, Toskala AK, Lin C, et al. Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19–positive patients compared to subjective methods: A systematic review and meta-analysis [Internet]. Infectious Diseases (except HIV/AIDS); 2020 Jul. Available from: http://medrxiv.org/lookup/doi/10.1101/2020.07.04.20145870
Harari Masri N, Shkurovich Bialik P. Auras olfatorias en pacientes con epilepsia. Neurol. Neurocir. Psiquiatr. 2019;47(1):16–21.
Hasin-Brumshtein Y, Lancet D, Olender T. Human olfaction: from genomic variation to phenotypic diversity. Trends Genet. 2009 Apr;25(4):178–84.
Hoepel W, Chen H-J, Geyer CE, Allahverdiyeva S, Manz XD, de Taeye SW, et al. High titers and low fucosylation of early human anti–SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci. Transl. Med. 2021 Jun 2;13(596):eabf8654.
Horvath L, Lim JWJ, Taylor JW, Saief T, Stuart R, Rimmer J, et al. Smell and taste loss in COVID-19 patients: assessment outcomes in a Victorian population. Acta Otolaryngol. (Stockh.). 2021 Mar 1;141(3):299–302.
Hummel T, Livermore A. Intranasal chemosensory function of the trigeminal nerve and aspects of its relation to olfaction. Int. Arch. Occup. Environ. Health. 2002 Jun 1;75(5):305–13.
Hummel T, Whitcroft KL, Andrews P, Altundag A, Cinghi C, Costanzo RM, et al. Position paper on olfactory dysfunction. Rhinology. 2016 Jan 31;56(1):1–30.
Hura N, Xie DX, Choby GW, Schlosser RJ, Orlov CP, Seal SM, et al. Treatment of post‐viral olfactory dysfunction: an evidence‐based review with recommendations. Int. Forum Allergy Rhinol. 2020 Sep;10(9):1065–86.
Husain Q, Kokinakos K, Kuo Y-H, Zaidi F, Houston S, Shargorodsky J. Characteristics of COVID-19 smell and taste dysfunction in hospitalized patients. Am. J. Otolaryngol. 2021 Nov;42(6):103068.
Jacek S, Stevenson RJ, Miller LA. Olfactory dysfunction in temporal lobe epilepsy: A case of ictus-related parosmia. Epilepsy Behav. 2007 Nov;11(3):466–70.
Johnson NS, Yun S-S, Thompson HT, Brant CO, Li W. A synthesized pheromone induces upstream movement in female sea lamprey and summons them into traps. Proc. Natl. Acad. Sci. 2009 Jan 27;106(4):1021–6.
Jung H-S, Akita K, Kim J-Y. Spacing patterns on tongue surface-gustatory papilla. Int. J. Dev. Biol. 2004;48(2–3):157–61.
Kakodkar P, Kaka N, Baig M. A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). Cureus [Internet]. 2020 Apr 6 [cited 2021 Jul 1]; Available from: https://www.cureus.com/articles/29670-a-comprehensive-literature-review-on-the-clinical-presentation-and-management-of-the-pandemic-coronavirus-disease-2019-covid-19
Kanjanaumporn J, Aeumjaturapat S, Snidvongs K, Seresirikachorn K, Chusakul S. Smell and taste dysfunction in patients with SARS-CoV-2 infection: A review of epidemiology, pathogenesis, prognosis, and treatment options. Asian Pac. J. Allergy Immunol. 2020 Jun;38(2):69–77.
Kim G -u., Kim M-J, Ra SH, Lee J, Bae S, Jung J, et al. Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19. Clin. Microbiol. Infect. 2020 Jul;26(7):948.e1-948.e3.
Kohli P, Soler ZM, Nguyen SA, Muus JS, Schlosser RJ. The Association Between Olfaction and Depression: A Systematic Review. Chem. Senses. 2016 Jul;41(6):479–86.
Koka V, Huang XR, Chung ACK, Wang W, Truong LD, Lan HY. Angiotensin II Up-Regulates Angiotensin I-Converting Enzyme (ACE), but Down-Regulates ACE2 via the AT1-ERK/p38 MAP Kinase Pathway. Am. J. Pathol. 2008 May;172(5):1174–83.
Kollndorfer K, Reichert JL, Brückler B, Hinterleitner V, Schöpf V. Self-esteem as an important factor in quality of life and depressive symptoms in anosmia: A pilot study. Clin. Otolaryngol. 2017 Dec;42(6):1229–34.
Koul D, Begh RA, Kalsotra P. Olfactory and Gustatory Alterations in Covid-19 Patients: A Tertiary Care Covid-19 Centre Inpatient Experience. Indian J. Otolaryngol. Head Neck Surg. 2021 Jan 28;1–5.
Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. J. Mol. Med. 2006 Oct;84(10):814–20.
Landis BN, Frasnelli J, Reden J, Lacroix JS, Hummel T. Differences Between Orthonasal and Retronasal Olfactory Functions in Patients With Loss of the Sense of Smell. Arch. Otolaryngol. Neck Surg. 2005 Nov 1;131(11):977.
Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol. 2020a Aug;277(8):2251–61.
Lechien JR, Chiesa-Estomba CM, Hans S, Barillari MR, Jouffe L, Saussez S. Loss of Smell and Taste in 2013 European Patients With Mild to Moderate COVID-19. Ann. Intern. Med. 2020b Oct 20;173(8):672–5.
Lee Y, Min P, Lee S, Kim S-W. Prevalence and Duration of Acute Loss of Smell or Taste in COVID-19 Patients. J. Korean Med. Sci. 2020;35(18):e174.
Lozada-Nur F, Chainani-Wu N, Fortuna G, Sroussi H. Dysgeusia in COVID-19: Possible Mechanisms and Implications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020 Sep;130(3):344–6.
Martinez BA, Cain WS, de Wijk RA, Spencer DD, et al. Olfactory functioning before and after temporal lobe resection for intractable seizures. Neuropsychology. 1993;7(3):351–63.
Martin-Lopez E, Ishiguro K, Greer CA. The Laminar Organization of Piriform Cortex Follows a Selective Developmental and Migratory Program Established by Cell Lineage. Cereb. Cortex. 2019 Jan 1;29(1):1–16.
Mastrangelo A, Bonato M, Cinque P. Smell and taste disorders in COVID-19: From pathogenesis to clinical features and outcomes. Neurosci. Lett. 2021 Mar;748:135694.
Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021 Feb;24(2):168–75.
Mendonça CV, Mendes Neto JA, Suzuki FA, Orth MS, Machado Neto H, Nacif SR. Olfactory dysfunction in COVID-19: a marker of good prognosis? Braz. J. Otorhinolaryngol. 2021 Jan;S1808869420302408.
Miesbach W. Pathological Role of Angiotensin II in Severe COVID-19. TH Open. 2020 Apr;04(02):e138–44.
Moein ST, Hashemian SM, Mansourafshar B, Khorram‐Tousi A, Tabarsi P, Doty RL. Smell dysfunction: a biomarker for COVID‐19. Int. Forum Allergy Rhinol. 2020 Aug;10(8):944–50.
Mombaerts P. Axonal Wiring in the Mouse Olfactory System. Annu. Rev. Cell Dev. Biol. 2006 Nov;22(1):713–37.
Mori I, Nishiyama Y, Yokochi T, Kimura Y. Virus-induced neuronal apoptosis as pathological and protective responses of the host. Rev. Med. Virol. 2004 Jul;14(4):209–16.
Paderno A, Schreiber A, Grammatica A, Raffetti E, Tomasoni M, Gualtieri T, et al. Smell and taste alterations in COVID‐19: a cross‐sectional analysis of different cohorts. Int. Forum Allergy Rhinol. 2020 Aug;10(8):955–62.
Rinaldi A. The scent of life: The exquisite complexity of the sense of smell in animals and humans. EMBO Rep. 2007 Jul;8(7):629–33.
Risso D, Drayna D, Morini G. Alteration, Reduction and Taste Loss: Main Causes and Potential Implications on Dietary Habits. Nutrients. 2020 Oct 27;12(11):3284.
Rombaux P, Mouraux A, Bertrand B, Guerit Jm, Hummel T. Assessment of olfactory and trigeminal function using chemosensory event-related potentials. Neurophysiol. Clin. Neurophysiol. 2006 Mar;36(2):53–62.
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020 May;109:102433.
Sato T, Ueha R, Goto T, Yamauchi A, Kondo K, Yamasoba T. Expression of ACE2 and TMPRSS2 proteins in the upper and lower aerodigestive tracts of rats [Internet]. Pathology; 2020 May. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.05.14.097204
Sedaghat AR, Gengler I, Speth MM. Olfactory Dysfunction: A Highly Prevalent Symptom of COVID-19 With Public Health Significance. Otolaryngol. Neck Surg. 2020 Jul;163(1):12–5.
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020 May 14;581(7807):221–4.
Singh AK, Touhara K, Okamoto M. Electrophysiological correlates of top-down attentional modulation in olfaction. Sci. Rep. 2019 Dec;9(1):4953.
Soucy ER, Albeanu DF, Fantana AL, Murthy VN, Meister M. Precision and diversity in an odor map on the olfactory bulb. Nat. Neurosci. 2009 Feb;12(2):210–20.
Stanojlović O, Nikolić T, Hrnčić D, Radonjić N, Rašić-Marković A, Mladenović D, et al. Ontogenetic influence on rat susceptibility to lindane seizure after pretreatment with phencyclidine. Environ. Toxicol. Pharmacol. 2013 Mar;35(2):161–70.
Stanojlović O, Rasić-Marković A, Hrncić D, Susić V, Macut D, Radosavljević T, et al. Two types of seizures in homocysteine thiolactone-treated adult rats, behavioral and electroencephalographic study. Cell. Mol. Neurobiol. 2009 May;29(3):329–39.
Stanojlović O, Živanović D, Šušić V. N-Methyl- D -aspartic acid- and metaphit-induced audiogenic seizures in rat model of seizures. Pharmacol. Res. 2000 Sep;42(3):247–53.
Stanojlović OP, Hrnčić DR, Živanović DP, Šušić VT. Anticonvulsant, but not antiepileptic, action of valproate on audiogenic seizures in metaphit-treated rats. Clin. Exp. Pharmacol. Physiol. 2007 Oct;34(10):1010–5.
Stanojlović OP, Zivanović DP, Mirković SD, Mikhaleva II. Antiepileptic activity of delta sleep-inducing peptide and its analogue in metaphit-provoked seizures in rats. Seizure. 2005 Jun;14(4):240–7.
Stevenson RJ. An Initial Evaluation of the Functions of Human Olfaction. Chem. Senses. 2010 Jan 1;35(1):3–20.
Stevenson RJ, Boakes RA. A mnemonic theory of odor perception. Psychol. Rev. 2003;110(2):340–64.
Stevenson RJ, Case TI, Boakes RA. Implicit and explicit tests of odor memory reveal different outcomes following interference. Learn. Motiv. 2005 Nov;36(4):353–73.
Šutulović N, Grubač Ž, Šuvakov S, Jerotić D, Puškaš N, Macut D, et al. Experimental Chronic Prostatitis/Chronic Pelvic Pain Syndrome Increases Anxiety-Like Behavior: The Role of Brain Oxidative Stress, Serum Corticosterone, and Hippocampal Parvalbumin-Positive Interneurons. Jakovljevic V, editor. Oxid. Med. Cell. Longev. 2021 Mar 2;2021:1–17.
Suzuki M, Saito K, Min W-P, Vladau C, Toida K, Itoh H, et al. Identification of Viruses in Patients With Postviral Olfactory Dysfunction: The Laryngoscope. 2007 Feb;117(2):272–7.
Temmel AFP, Quint C, Schickinger-Fischer B, Klimek L, Stoller E, Hummel T. Characteristics of Olfactory Disorders in Relation to Major Causes of Olfactory Loss. Arch. Otolaryngol. Neck Surg. 2002 Jun 1;128(6):635.
Tong JY, Wong A, Zhu D, Fastenberg JH, Tham T. The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis. Otolaryngol. Neck Surg. 2020 Jul;163(1):3–11.
Vaira LA, Salzano G, Fois AG, Piombino P, De Riu G. Potential pathogenesis of ageusia and anosmia in COVID‐19 patients. Int. Forum Allergy Rhinol. 2020 Sep;10(9):1103–4.
Varney NR. Prognostic Significance of Anosmia in patients with Closed-Head Trauma. J. Clin. Exp. Neuropsychol. 1988 Mar;10(2):250–4.
White TL. Olfactory Memory: the Long and Short of It. Chem. Senses. 1998 Aug 1;23(4):433–41.
Whitfield IC. The Object of the Sensory Cortex. Brain. Behav. Evol. 1979;16(2):129–54.
Williams FM, Freidin MB, Mangino M, Couvreur S, Visconti A, Bowyer RC, et al. Self-reported symptoms of covid-19 including symptoms most predictive of SARS-CoV-2 infection, are heritable [Internet]. Genetic and Genomic Medicine; 2020 Apr. Available from: http://medrxiv.org/lookup/doi/10.1101/2020.04.22.20072124
Wong DKC, Gendeh HS, Thong HK, Lum SG, Gendeh BS, Saim A, et al. A review of smell and taste dysfunction in COVID-19 patients. Med. J. Malaysia. 2020 Sep;75(5):574–81.
Xydakis MS, Mulligan LP, Smith AB, Olsen CH, Lyon DM, Belluscio L. Olfactory impairment and traumatic brain injury in blast-injured combat troops: A cohort study. Neurology. 2015 Apr 14;84(15):1559–67.
Yan CH, Faraji F, Prajapati DP, Ostrander BT, DeConde AS. Self‐reported olfactory loss associates with outpatient clinical course in COVID‐19. Int. Forum Allergy Rhinol. 2020 Jul;10(7):821–31.
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir. Med. 2020 May;8(5):475–81.