Significance of right ventricular function for the outcome of treatment and remodeling of the heart after LVAD implantation
Abstract
The efficiency of the device for permanent circulatory support of the left ventricle has been proven through clinical practice with the trend of constant improvement of treatment results along with biotechnological progress and improvement of surgical implantation techniques. The published reports of most reference cardiac surgery centers present a one-year survival rate of over 85%, a two-year survival rate of 70% and a five-year survival rate of 45-50%. In addition to clear benefits for the patient, LVAD implantation also carries significant specific risks, so infections, post-implantation bleeding, strokes, and right ventricular post implantation weakness are the most common complications. Given that the progress of the LVAD program is ensured primarily by reducing the incidence of complications not related to the functioning of individual segments of the cardiovascular system, and as left ventricular function is completely replaced by LVAD device, the most reasent challeng is the decision to install LVAD device in the heart with right ventricular given that the post implantation weakness of right vantricular is associated with proven increased mortality and morbidity. Since the 1990s, studies on hearts with implanted LVAD as a bridge to heart transplantation have shown regression of cell hypertophy, normalization of cell size, muscle fiber architecture, and heart chamber geometry. The described changes are characterized by the notion of reverse remodeling, which is synonymous with function recovery. It is this process at the level of the right ventricle that is recognized as extremely important for the success of LVAD programs, especially in the group of patients who have a certain degree of right ventricular weakness preoperatively.
The basic requirements of the cardiac surgery team are adequate preoperative assessment of right ventricular weakness, then application of measures to prevent damage and load on the right ventricle during and after LVAD implantation, as well as providing adequate therapeutic measures for right ventricular recovery in the postimplantation period.
References
Reference
- Han JJ, Acker MA, Atluri P. Left Ventricular Assist Devices. Circulation. 2018 Dec 11;138(24):2841-2851. doi: 10.1161/CIRCULATIONAHA.118.035566. PMID: 30565993.
- Emerson D, Chikwe J, Catarino P, Hassanein M, Deng L, Cantor RS, Roach A, Cole R, Esmailian F, Kobashigawa J, Moriguchi J, Kirklin JK. Contemporary Left Ventricular Assist Device Outcomes in an Aging Population: An STS INTERMACS Analysis. J Am Coll Cardiol. 2021 Aug 31;78(9):883-894. doi: 10.1016/j.jacc.2021.06.035. PMID: 34446160.
- Mehra MR, Cleveland JC Jr, Uriel N, Cowger JA, Hall S, Horstmanshof D, Naka Y, Salerno CT, Chuang J, Williams C, Goldstein DJ; MOMENTUM 3 Investigators. Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants. Eur J Heart Fail. 2021 Aug;23(8):1392-1400. doi: 10.1002/ejhf.2211. Epub 2021 May 18. PMID: 33932272; PMCID: PMC8453814.
- Hill JD. John H. Gibbon, Jr. Part I. The development of the first successful heart-lung machine. Ann Thorac Surg. 1982 Sep;34(3):337-41. doi: 10.1016/s0003-4975(10)62507-6. PMID: 7052001.
- Eisen HJ. Left Ventricular Assist Devices (LVADS): History, Clinical Application and Complications. Korean Circ J. 2019 Jul;49(7):568-585. doi: 10.4070/kcj.2019.0161. PMID: 31243930; PMCID: PMC6597447.
- Brink JG, Cooper DK. Heart transplantation: the contributions of Christiaan Barnard and the University of Cape Town/Groote Schuur Hospital. Wld J Surg. 2005;29(8):953–961.
- Barnard CN. The operation. A human cardiac transplant: an interim report of a successful operation performed at Groote Schuur Hospital, Cape Town. S Afr Med J. 1967;41(48):1271–1274.
- Cook JA, Shah KB, Quader MA, Cooke RH, Kasirajan V, Rao KK, Smallfield MC, Tchoukina I, Tang DG. The total artificial heart. J Thorac Dis. 2015 Dec;7(12):2172-80. doi: 10.3978/j.issn.2072-1439.2015.10.70. Erratum in: J Thorac Dis. 2017 Mar;9(3):E342. PMID: 26793338; PMCID: PMC4703693.
- Roest S, Kaffka Genaamd Dengler SE, van Suylen V, van der Kaaij NP, Damman K, van Laake LW, Bekkers JA, Dalinghaus M, Erasmus ME, Manintveld OC. Waiting list mortality and the potential of donation after circulatory death heart transplantations in the Netherlands. Neth Heart J. 2021 Feb;29(2):88-97. doi: 10.1007/s12471-020-01505-y. Epub 2020 Nov 6. PMID: 33156508; PMCID: PMC7843666.
- Chair SY, Yu DS, Ng MT, Wang Q, Cheng HY, Wong EM, Sit JW. Evolvement of left ventricular assist device: the implications on heart failure management. J Geriatr Cardiol. 2016 Jul;13(5):425-30. doi: 10.11909/j.issn.1671-5411.2016.05.015. PMID: 27594870; PMCID: PMC4984573.
- Gwyn JC. Left ventricular assist devices. J Intensive Care Soc. 2020 Nov;21(4):355-358. doi: 10.1177/1751143720930583. Epub 2020 Jun 8. PMID: 34093739; PMCID: PMC8142093.
- Pya Y, Maly J, Bekbossynova M, Salov R, Schueler S, Meyns B, Kassif Y, Massetti M, Zilbershlag M, Netuka I. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device. J Heart Lung Transplant. 2019 Apr;38(4):339-343. doi: 10.1016/j.healun.2019.01.1316. Epub 2019 Feb 5. PMID: 30945635.
- Trachtenberg BH, Cordero-Reyes A, Elias B, Loebe M. A review of infections in patients with left ventricular assist devices: prevention, diagnosis and management. Methodist DebakeyCardiovasc J. 2015 Jan-Mar;11(1):28-32. doi: 10.14797/mdcj-11-1-28. PMID: 25793027; PMCID: PMC4362062.
- Caccamo M, Eckman P, John R. Current state of ventricular assist devices. Curr Heart Fail Rep. 2011 Jun;8(2):91-8. doi: 10.1007/s11897-011-0050-z. PMID: 21336538.
- Vedachalam S, Balasubramanian G, Haas GJ, Krishna SG. Treatment of gastrointestinal bleeding in left ventricular assist devices: A comprehensive review. World J Gastroenterol. 2020 May 28;26(20):2550-2558. doi: 10.3748/wjg.v26.i20.2550. PMID: 32523310; PMCID: PMC7265145.
- Willey JZ, Gavalas MV, Trinh PN, Yuzefpolskaya M, Reshad Garan A, Levin AP, Takeda K, Takayama H, Fried J, Naka Y, Topkara VK, Colombo PC. Outcomes after stroke complicating left ventricular assist device. J Heart Lung Transplant. 2016 Aug;35(8):1003-9. doi: 10.1016/j.healun.2016.03.014. Epub 2016 Mar 30. PMID: 27160495; PMCID: PMC4983489.
- Charisopoulou, D, Banner, NR, Demetrescu, C, et al. Right atrial and ventricular echocardiographic strain analysis predicts requirement for right ventricular support after left ventricular assist device implantation. Eur Heart J Cardiovasc Imaging 2019; 20: 199–208.
- Atluri, P, Goldstone, AB, Fairman, AS, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg 2013; 96: 857–863; discussion 863–864.
- Patlolla, B, Beygui, R, Haddad, F. Right-ventricular failure following left ventricle assist device implantation. Curr Opin Cardiol 2013; 28: 223–233.
- Patil, NP, Mohite, PN, Sabashnikov, A, et al. Preoperative predictors and outcomes of right ventricular assist device implantation after continuous-flow left ventricular assist device implantation. J Thorac Cardiovasc Surg 2015; 150: 1651–1658.
- Schlöglhofer T, Wittmann F, Paus R, Riebandt J, Schaefer AK, Angleitner P, Granegger M, Aigner P, Wiedemann D, Laufer G, Schima H, Zimpfer D. When Nothing Goes Right: Risk Factors and Biomarkers of Right Heart Failure after Left Ventricular Assist Device Implantation. Life (Basel). 2022 Mar 20;12(3):459. doi: 10.3390/life12030459. PMID: 35330210; PMCID: PMC8952681.
- Cordtz, J, Nilsson, JC, Hansen, PB, et al. Right ventricular failure after implantation of a continuous-flow left ventricular assist device: early haemodynamic predictors. Eur J Cardiothorac Surg 2014; 45: 847–853.
- Shah, P, Ha, R, Singh, R, et al. Multicenter experience with durable biventricular assist devices. J Heart Lung Transplant 2018; 37: 1093–1101.
- Schmack, B, Farag, M, Kremer, J, et al. Results of concomitant groin-free percutaneous temporary RVAD support using a centrifugal pump with a double-lumen jugular venous cannula in LVAD patients. J Thorac Dis 2019; 11: S913–S920.
- Azevedo PS, Polegato BF, Minicucci MF, Paiva SA, Zornoff LA. Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq Bras Cardiol. 2016 Jan;106(1):62-9. doi: 10.5935/abc.20160005. Epub 2015 Dec 8. PMID: 26647721; PMCID: PMC4728597.
- Treibel TA, Kozor R, Schofield R, Benedetti G, Fontana M, Bhuva AN, Sheikh A, López B, González A, Manisty C, Lloyd G, Kellman P, Díez J, Moon JC. Reverse Myocardial Remodeling Following Valve Replacement in Patients With Aortic Stenosis. J Am Coll Cardiol. 2018 Feb 27;71(8):860-871. doi: 10.1016/j.jacc.2017.12.035. PMID: 29471937; PMCID: PMC5821681.
- Spinelli L, Morisco C, Assante di Panzillo E, Izzo R, Trimarco B. Reverse left ventricular remodeling after acute myocardial infarction: the prognostic impact of left ventricular global torsion. Int J Cardiovasc Imaging. 2013 Apr;29(4):787-95. doi: 10.1007/s10554-012-0159-5. Epub 2012 Nov 22. PMID: 23179752.
- Sakata T, Mogi K, Sakurai M, Nomura A, Fujii M, Kaneyuki D, Matsumiya G, Takahara Y. Effect of tricuspid annuloplasty concomitant with left heart surgery on right heart geometry and function. J Thorac Cardiovasc Surg. 2018 Sep;156(3):1050-1061. doi: 10.1016/j.jtcvs.2018.03.101. Epub 2018 Apr 3. PMID: 29724595.
- Fonseca C. Reverse remodeling: Much room for research. Rev Port Cardiol. 2016 May;35(5):261-4. English, Portuguese. doi: 10.1016/j.repc.2016.04.001. PMID: 27173744.
- Kato TS, Chokshi A, Singh P, Khawaja T, Cheema F, Akashi H, Shahzad K, Iwata S, Homma S, Takayama H, Naka Y, Jorde U, Farr M, Mancini DM, Schulze PC. Effects of continuous-flow versus pulsatile-flow left ventricular assist devices on myocardial unloading and remodeling. Circ Heart Fail. 2011 Sep;4(5):546-53. doi: 10.1161/CIRCHEARTFAILURE.111.962142. Epub 2011 Jul 15. PMID: 21765125; PMCID: PMC3178740.
- Pan S, Aksut B, Wever-Pinzon OE, et al. Incidence and predictors of myocardial recovery on long-term left ventricular assist device support: Results from the United Network for Organ Sharing database. J Heart Lung Transplant. 2015; 34:1624–9. [PubMed: 26442678
- Givertz MM, Mann DL. Epidemiology and natural history of recovery of left ventricular function in recent onset dilated cardiomyopathies. Curr Heart Fail Rep. 2013; 10:321–30. A review of the rate of spontaneous recovery in different forms of cardiomyopathy. [PubMed: 24014141]
- Konstam MA, Kiernan MS, Bernstein D, Bozkurt B, Jacob M, Kapur NK, Kociol RD, Lewis EF, Mehra MR, Pagani FD, Raval AN, Ward C; American Heart Association Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; and Council on Cardiovascular Surgery and Anesthesia. Evaluation and Management of Right-Sided Heart Failure: A Scientific Statement From the American Heart Association. Circulation. 2018 May 15;137(20):e578-e622. doi: 10.1161/CIR.0000000000000560. Epub 2018 Apr 12. PMID: 29650544.
- Houston BA, Shah KB, Mehra MR, Tedford RJ. A new "twist" on right heart failure with left ventricular assist systems. J Heart Lung Transplant. 2017 Jul;36(7):701-707. doi: 10.1016/j.healun.2017.03.014. Epub 2017 Mar 24. PMID: 28416103.
- Marinescu KK, Uriel N, Mann DL, Burkhoff D. Left ventricular assist device-induced reverse remodeling: it's not just about myocardial recovery. Expert Rev Med Devices. 2017 Jan;14(1):15-26. doi: 10.1080/17434440.2017.1262762. Epub 2016 Dec 22. PMID: 27871197; PMCID: PMC5541390.
- Leidenfrost, J, Prasad, S, Itoh, A, et al. Right ventricular assist device with membrane oxygenator support for right ventricular failure following implantable left ventricular assist device placement. Eur J Cardiothorac Surg 2016; 49: 73–77.
- Khorsandi, M, Schroder, J, Daneshmand, M, et al. Outcomes after extracorporeal right ventricular assist device combined with durable left ventricular assist device support. Ann Thorac Surg 2019; 107: 1768–1774.