THE ROLE OF GENE MODIFIERS ON CLINICAL COURSE OF DUCHENNE MUSCULAR DYSTROPHY

  • Ana Kosac
Keywords: Duchenne muscular dystrophy, gene modifiers, SPP1, LTBP4, CD40

Abstract


ABSTRACT

 

Duchenne muscular dystrophy is the most common inherited muscle disease in childhood, which has a progressive clinical course with a fatal outcome that most often occurs between second and fourth decade of life. The disease is inherited X-linked, recessively, and in two thirds of patients it is transmitted from the mother, while in the remaining third of patients it is a "de novo" mutation. Mutations in the dystrophin gene (DMD gene) such as deletions, duplications and small mutations can be found throughout the entire length of the gene. The disease begins between the third and fifth year of life, and the initial muscle weaknesses are clinically manifested as slower running, difficulty climbing stairs or difficulty getting up from squats. Sometimes, accidentally discovered, elevated keratin kinase values ​​or delayed early psychomotor development milestones in a child with hypertrophic calves can initiate a diagnostic procedure in the direction of Duchenne muscular dystrophy. The disease usually has a uniform clinical course and implies a clear time sequence of events. Muscle weakness leads to loss of ambulation, then the function of the upper extremities, to complete immobility, with the evolution of dilated cardiomyopathy and respiratory insufficiency, which are the main cause of death. Certain patients show deviations from the above in terms of longer functionality and later loss of independent ambulation, later cardiomyopathy and respiratory insufficiency and vice versa. It is believed that in addition to the application of modern standards of care and treatment of patients, the clinical course is influenced by genes independent of the causal DMD gene, which affects processes in dystrophic muscle, primarily inflammation, fibrosis and fatty infiltration, through specific signaling pathways. So far, six genes have been described whose variants modify the course of Duchenne muscular dystrophy. SPP1 (secreted phosphoprotein 1) is the first described gene whose G allele in the variant rs28357094 is associated with an earlier age of gait loss. In addition, variants in the genes described are: LTBP4 (latent transforming growth factor-β binding protein 4), CD40, ACTN3 (actinin 3), THBS1 (thrombospondin 1) and TCTEX1D1 (Tctex1 domain containing 1). The aim of this paper is to present till now known genes that modify Duchenne muscular dystrophy and their influence on the clinical course of the disease.

References

Reference:


1.      Ryder S, Leadley RM, Armstrong N, Westwood M, de Kock S, Butt Tet al. The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J Rare Dis. 2017;12(1):79.


2.      Emery AEH. The muscular dystrophies. The Lancet. 2002;359(9307):687-95.


3.      Aartsma-Rus A, Ginjaar IB, Bushby K. The importance of genetic diagnosis for Duchenne muscular dystrophy. J Med Genet. 2016;53(3):145-51. 


4.      Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9:77–93.


5.      Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003;2(12):731-40.


6.      Desguerre I, Christov C, Mayer M, Zeller R, Becane HM, Bastuji-Garin S, et al. Clinical heterogeneity of Duchenne muscular dystrophy (DMD): definition of sub-phenotypes and predictive criteria by long-term follow-up. PLoS One. 2009;4(2):e4347.


7.      Humbertclaude V, Hamroun D, Bezzou K, Bérard C, Boespflug-Tanguy O, Bommelaer C, et al. Motor and respiratory heterogeneity in Duchenne patients: implication for clinical trials. Eur J Paediatr Neurol. 2012;16(2):149-60.


8.      Hufton M, Roper H. Variations in Duchenne muscular dystrophy course in a multi-ethnic UK population: potential influence of socio-economic factors. Dev Med Child Neurol. 2017;59(8):837-42.


9.      Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):251-67.


10.  Birnkrant DJ, Bushby K, Bann CM, Alman BA, Apkon SD, Blackwell A, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17(4):347-61.


11.  Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Colvin MK, et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 2018;17(5):445-55.


12.  Manzur AY, Kuntzer T, Pike M, Swan A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2008 Jan 23;(1):CD003725. Update in: Cochrane Database Syst Rev. 2016;(5):CD003725.


13.  McDonald CM, Henricson EK, Abresch RT, Duong T, Joyce NC, Hu F, et al. Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study. Lancet. 2018;391(10119):451-61.


14.  Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur A.Corticosteroides para el tratamiento de la distrofia muscular de Duchenne. Cochrane Database Sys Rev 2016:CD003725.


15.  Bladen CL, Salgado D, Monges S jos 3 koautora nedostaju et al.The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 2015;36(4), 395–402.


16.  Bello L, Pegoraro E. Genetic diagnosis as a tool for personalized treatment of Duchenne muscular dystrophy. ActaMyol. 2016;35(3):122-27.


17.  Laing NG, Davis MR, Bayley K, Fletcher S, Wilton SD. Molecular diagnosis of duchenne muscular dystrophy: past, present and future in relation to implementing therapies. ClinBiochem Rev. 2011;32(3):129-34.


18.  Wagner KR, Kuntz NL, Koenig E, East L, Upadhyay S, Han B, et al. Safety, tolerability, and pharmacokinetics of casimersen in patients with Duchenne muscular dystrophy amenable to exon 45 skipping: A randomized, double-blind, placebo-controlled, dose-titration trial. Muscle Nerve. 2021;64(3):285-92.


19.  Clemens PR, Rao VK, Connolly AM, Harper AD, Mah JK, Smith EC, McDonald CM, Zaidman CM, Morgenroth LP, Osaki H, Satou Y, Yamashita T, Hoffman EP; CINRG DNHS Investigators. Safety, Tolerability, and Efficacy of Viltolarsen in Boys withDuchenne Muscular Dystrophy Amenable to Exon 53 Skipping: A Phase 2 Randomized Clinical Trial. JAMA Neurol. 2020;77(8):982-91.


20.  McDonald CM, Shieh PB, Abdel-Hamid HZ, Connolly AM, Ciafaloni E, Wagner KR, et al. Open-Label Evaluation of Eteplirsen in Patients with Duchenne Muscular Dystrophy Amenable to Exon 51 Skipping: PROMOVI Trial. J Neuromuscul Dis. 2021;8(6):989-1001.


21.  van den Bergen JC, Ginjaar HB, Niks EH, Aartsma-Rus A, Verschuuren JJ. Prolonged Ambulation in Duchenne Patients with a Mutation Amenable to Exon 44 Skipping. J Neuromuscul Dis. 2014;1(1):91-4.


22.  Winnard AV, Mendell JR, Prior TW, Florence J, Burghes AH. Frameshift deletions of exons 3-7 and revertant fibers in Duchenne muscular dystrophy: mechanisms of dystrophin production. Am J Hum Genet. 1995;56(1):158-66.


23.  Bello L, Pegoraro E. The "Usual Suspects": Genes for Inflammation, Fibrosis, Regeneration, and Muscle Strength Modify Duchenne Muscular Dystrophy. J Clin Med. 2019;8(5):649.


24.  Spitali P, Zaharieva I, Bohringer S, Hiller M, Chaouch A, Roos A, et al. TCTEX1D1 is a genetic modifier of disease progression in Duchenne muscular dystrophy. Eur J Hum Genet. 2020;28(6):815-25.


25.  Pegoraro E, Hoffman EP, Piva L, Gavassini BF, Cagnin S, Ermani M, et al. SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy. Neurology. 2011;76(3):219-26.


26.  Kramerova I, Kumagai-Cresse C, Ermolova N, Mokhonova E, Marinov M, Capote J, et al. Spp1 (osteopontin) promotes TGFβ processing in fibroblasts of dystrophin-deficient muscles through matrix metalloproteinases. Hum Mol Genet. 2019;28(20):3431-42.


27.  Bello L, Piva L, Barp A, Taglia A, Picillo E, Vasco G, et al. Importance of SPP1 genotype as a covariate in clinical trials in Duchenne muscular dystrophy. Neurology. 2012;79(2):159-62.


28.  Bello L, Kesari A, Gordish-Dressman H, Cnaan A, Morgenroth LP, Punetha J, et al. Genetic modifiers of ambulation in the Cooperative International Neuromuscular Research Group Duchenne Natural History Study. Ann Neurol. 2015;77(4):684-96.


29.  Flanigan KM, Ceco E, Lamar KM, Kaminoh Y, Dunn DM, Mendell JR, er al. LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Ann Neurol. 2013;73(4):481-8.


30.  Heydemann A, Ceco E, Lim JE, Hadhazy M, Ryder P, Moran JL, et al. Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. J Clin Invest. 2009;119(12):3703-12.


31.  van den Bergen JC, Hiller M, Böhringer S, Vijfhuizen L, Ginjaar HB, Chaouch A, et al. Validation of genetic modifiers for Duchenne muscular dystrophy: a multicentre study assessing SPP1 and LTBP4 variants. J NeurolNeurosurg Psychiatry. 2015;86(10):1060-5.


32.  Bello L, Flanigan KM, Weiss RB; United Dystrophinopathy Project, Spitali P, Aartsma-Rus A, et al. Association Study of Exon Variants in the NF-κB and TGFβ Pathways Identifies CD40 as a Modifier of Duchenne Muscular Dystrophy. Am J Hum Genet. 2016;99(5):1163-71.


33.  Luo K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring HarbPerspect Biol. 2017;9(1):a022137.


34.  Hogarth MW, Houweling PJ, Thomas KC, Gordish-Dressman H, Bello L; Cooperative International Neuromuscular Research Group (CINRG), et al. Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nat Commun. 2017;8:14143.


35.  Weiss RB, Vieland VJ, Dunn DM, Kaminoh Y, Flanigan KM; United Dystrophinopathy Project. Long-range genomic regulators of THBS1 and LTBP4 modify disease severity in Duchenne muscular dystrophy. Ann Neurol. 2018;84(2):234-45.


36.  Bello LD'Angelo GVilla MFusto AVianello .Merlo B. et al. Genetic modifiers of respiratory function in Duchenne muscular dystrophy. Ann ClinTransl Neurol. 2020;7(5):786-98.


37.  Barp A, Bello L, Politano L, Melacini P, Calore C, Polo A, et al. Genetic Modifiers of Duchenne Muscular Dystrophy and Dilated Cardiomyopathy. PLoS One. 2015;10(10):e0141240.


 


38.  Kosac A, Pesovic J, Radenkovic L, Brkusanin M, Radovanovic N, Djurisic M, et al. LTBP4, SPP1, and CD40 Variants: Genetic Modifiers of Duchenne Muscular Dystrophy Analyzed in Serbian Patients. Genes. 2022;13(8):1385.

Published
2023/11/29
Section
Mini pregledni članak