Microbiota and Alzheimer’s disease: toward new clinical approaches
Abstract
Alzheimer’s disease (AD) is now viewed as a systemic disorder in which genetics, the gut microbiome and immune dysregulation converge to accelerate amyloid-β (Aβ) and tau pathology. Genetic studies have identified 70 risk loci. APOE ε4 is the strongest AD risk loci, conferring dose-dependent risk through impaired cholesterol trafficking, reduced Aβ clearance and heightened neuroinflammation. Rare mutations in TREM2 and CD33 further illustrate the centrality of microglia-mediated innate immunity. Importantly, peripheral Th17 skewing, neutrophil hyper-activation and loss of regulatory myeloid cells amplify neuroinflammation. Growing evidence links gut dysbiosis to these genetic factors. APOE ε4 carriers show depletion of Short-Chain Fatty Acids (SCFA)-producing taxa (Gemmiger, Roseburia, Faecalibacterium) and enrichment of pro-inflammatory Proteobacteria (Escherichia/Shigella, Morganella). In mice, APOE4-dependent loss of butyrate-producing bacteria lowers colonic and serum SCFA levels and worsens tauopathy, whereas Germ-free housing, early antibiotics and SCFA supplementation rescue pathology. Large meta-analyses correlate Collinsella and Veillonella with higher AD risk, and Eubacterium nodatum and Prevotella 9 with protection. Metabolomic shifts mirror these compositional changes: acetate, propionate and butyrate, as well as trimethylamine N-oxide (TMAO) promote epigenetic regulation, blood–brain-barrier (BBB) integrity and microglial homeostasis, whereas secondary bile acids compromise cognition. The microbial amyloids and lipopolysaccharide can cross-seed Aβ, activate the NLRP3 inflammasome, and breach the blood-brain barrier. Intermittent fasting, ketogenic diets, specific probiotics (Bifidobacterium breve A1, Lacticaseibacillus rhamnosus CBT-LR5), sodium oligomannate (GV-971) or fecal microbiota transplantation can remodel gut ecology, raise beneficial SCFAs, dampen pro-inflammatory cytokines and improve cognition in patients with AD or mild cognitive impairment. Collectively, the data support a gut–immune system-brain axis in which host genotype shapes microbiota, and microbial metabolites or antigens contribute to neurodegeneration. Future work must define responder phenotypes, optimise next-generation probiotics and integrate multi-omics profiling with biomarker-driven clinical trials to translate microbiota modulation into disease-modifying therapy for AD.
References
2. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc. 2018 Apr;14(4):535–62.
3. Jack CR, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, et al. Revised criteria for diagnosis and staging of Alzheimer’s disease: Alzheimer’s Association Workgroup. Alzheimers Dement J Alzheimers Assoc. 2024 Aug;20(8):5143–69.
4. Sherrington R, Froelich S, Sorbi S, Campion D, Chi H, Rogaeva EA, et al. Alzheimer’s Disease Associated with Mutations in Presenilin 2 is Rare and Variably Penetrant. Hum Mol Genet. 1996 Jul 1;5(7):985–8.
5. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991 Feb;349(6311):704–6.
6. Tcw J, Goate AM. Genetics of β-Amyloid Precursor Protein in Alzheimer’s Disease. Cold Spring Harb Perspect Med. 2017 Jun 1;7(6):a024539.
7. Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem. 2008 Oct 31;283(44):29615–9.
8. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1977–81.
9. Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet. 2022 Apr;54(4):412–36.
10. Shore VG, Shore B. Heterogeneity of human plasma very low density lipoproteins. Separation of species differing in protein components. Biochemistry. 1973 Jan 30;12(3):502–7.
11. Huang Y, Weisgraber KH, Mucke L, Mahley RW. Apolipoprotein E: diversity of cellular origins, structural and biophysical properties, and effects in Alzheimer’s disease. J Mol Neurosci MN. 2004;23(3):189–204.
12. Han X. The role of apolipoprotein E in lipid metabolism in the central nervous system. Cell Mol Life Sci CMLS. 2004 Aug;61(15):1896–906.
13. Xia Z, Prescott EE, Urbanek A, Wareing HE, King MC, Olerinyova A, et al. Co-aggregation with Apolipoprotein E modulates the function of Amyloid-β in Alzheimer’s disease. Nat Commun. 2024 Jun 1;15(1):4695.
14. Jay TR, Miller CM, Cheng PJ, Graham LC, Bemiller S, Broihier ML, et al. TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer’s disease mouse models. J Exp Med. 2015 Mar 9;212(3):287–95.
15. Bradshaw EM, Chibnik LB, Keenan BT, Ottoboni L, Raj T, Tang A, et al. CD33 Alzheimer’s disease locus: altered monocyte function and amyloid biology. Nat Neurosci. 2013 Jul;16(7):848–50.
16. Bhattacherjee A, Jung J, Zia S, Ho M, Eskandari-Sedighi G, St Laurent CD, et al. The CD33 short isoform is a gain-of-function variant that enhances Aβ1-42 phagocytosis in microglia. Mol Neurodegener. 2021 Mar 25;16(1):19.
17. Griciuc A, Patel S, Federico AN, Choi SH, Innes BJ, Oram MK, et al. TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer’s Disease. Neuron. 2019 Sep 4;103(5):820-835.e7.
18. Tran TTT, Corsini S, Kellingray L, Hegarty C, Le Gall G, Narbad A, et al. APOE genotype influences the gut microbiome structure and function in humans and mice: relevance for Alzheimer’s disease pathophysiology. FASEB J Off Publ Fed Am Soc Exp Biol. 2019 Jul;33(7):8221–31.
19. Seo D oh, O’Donnell D, Jain N, Ulrich JD, Herz J, Li Y, et al. ApoE isoform and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science. 2023 Jan 13;379(6628):eadd1236.
20. Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis JAD. 2011;26(1):187–97.
21. Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother. 2018 Jan;18(1):83–90.
22. Hou M, Xu G, Ran M, Luo W, Wang H. APOE-ε4 Carrier Status and Gut Microbiota Dysbiosis in Patients With Alzheimer Disease. Front Neurosci. 2021 Feb 24;15:619051.
23. Cammann D, Lu Y, Cummings MJ, Zhang ML, Cue JM, Do J, et al. Genetic correlations between Alzheimer’s disease and gut microbiome genera. Sci Rep. 2023 Mar 31;13:5258.
24. Zhao Q, Baranova A, Cao H, Zhang F. Evaluating Causal Effects of Gut Microbiome on Alzheimer’s Disease. J Prev Alzheimers Dis. 2024;11(6):1843–8.
25. Zeng H, Zhou K, Zhuang Y, Li A, Luo B, Zhang Y. Unraveling the connection between gut microbiota and Alzheimer’s disease: a two-sample Mendelian randomization analysis. Front Aging Neurosci. 2023;15:1273104.
26. Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, et al. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology. 2021 Sep 15;196:108719.
27. Scimemi A, Meabon JS, Woltjer RL, Sullivan JM, Diamond JS, Cook DG. Amyloid-β1-42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J Neurosci Off J Soc Neurosci. 2013 Mar 20;33(12):5312–8.
28. Andersen JV, Christensen SK, Westi EW, Diaz-delCastillo M, Tanila H, Schousboe A, et al. Deficient astrocyte metabolism impairs glutamine synthesis and neurotransmitter homeostasis in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2021 Jan;148:105198.
29. Chandra S, Sisodia SS, Vassar RJ. The gut microbiome in Alzheimer’s disease: what we know and what remains to be explored. Mol Neurodegener. 2023 Feb 1;18(1):9.
30. Ahmed H, Leyrolle Q, Koistinen V, Kärkkäinen O, Layé S, Delzenne N, et al. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes. 2022;14(1):2102878.
31. Sampson T. Microbial amyloids in neurodegenerative amyloid diseases. FEBS J. 2025 Mar;292(6):1265–81.
32. Blanco-Míguez A, Tamés H, Ruas-Madiedo P, Sánchez B. Microbiota-Derived β-Amyloid-like Peptides Trigger Alzheimer’s Disease-Related Pathways in the SH-SY5Y Neural Cell Line. Nutrients. 2021 Oct 29;13(11):3868.
33. Lundmark K, Westermark GT, Olsén A, Westermark P. Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: Cross-seeding as a disease mechanism. Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):6098–102.
34. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014 Nov 19;6(263):263ra158.
35. Hoyles L, Pontifex MG, Rodriguez-Ramiro I, Anis-Alavi MA, Jelane KS, Snelling T, et al. Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome. 2021 Nov 27;9(1):235.
36. Pappolla MA, Perry G, Fang X, Zagorski M, Sambamurti K, Poeggeler B. Indoles as essential mediators in the gut-brain axis. Their role in Alzheimer’s disease. Neurobiol Dis. 2021 Aug 1;156:105403.
37. MahmoudianDehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G, et al. Altered Bile Acid Profile Associates with Cognitive Impairment in Alzheimer’s Disease – An Emerging Role for Gut Microbiome. Alzheimers Dement J Alzheimers Assoc. 2019 Jan;15(1):76–92.
38. De Strooper B, Karran E. The Cellular Phase of Alzheimer’s Disease. Cell. 2016 Feb 11;164(4):603–15.
39. Thome AD, Faridar A, Beers DR, Thonhoff JR, Zhao W, Wen S, et al. Functional alterations of myeloid cells during the course of Alzheimer’s disease. Mol Neurodegener. 2018 Nov 13;13(1):61.
40. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013 Jan 31;493(7434):674–8.
41. Ciaramella A, Salani F, Bizzoni F, Orfei MD, Caltagirone C, Spalletta G, et al. Myeloid dendritic cells are decreased in peripheral blood of Alzheimer’s disease patients in association with disease progression and severity of depressive symptoms. J Neuroinflammation. 2016 Jan 25;13:18.
42. Naert G, Rivest S. CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci. 2011 Apr 20;31(16):6208–20.
43. Rosenzweig N, Dvir-Szternfeld R, Tsitsou-Kampeli A, Keren-Shaul H, Ben-Yehuda H, Weill-Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019 Jan 28;10(1):465.
44. Dong Y, Lagarde J, Xicota L, Corne H, Chantran Y, Chaigneau T, et al. Neutrophil hyperactivation correlates with Alzheimer’s disease progression. Ann Neurol. 2018 Feb;83(2):387–405.
45. Ferretti MT, Merlini M, Späni C, Gericke C, Schweizer N, Enzmann G, et al. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis. Brain Behav Immun. 2016 May;54:211–25.
46. Marsh SE, Abud EM, Lakatos A, Karimzadeh A, Yeung ST, Davtyan H, et al. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):E1316-1325.
47. Oberstein TJ, Taha L, Spitzer P, Hellstern J, Herrmann M, Kornhuber J, et al. Imbalance of Circulating Th17 and Regulatory T Cells in Alzheimer’s Disease: A Case Control Study. Front Immunol. 2018;9:1213.
48. Brigas HC, Ribeiro M, Coelho JE, Gomes R, Gomez-Murcia V, Carvalho K, et al. IL-17 triggers the onset of cognitive and synaptic deficits in early stages of Alzheimer’s disease. Cell Rep. 2021 Aug 31;36(9):109574.
49. Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature. 2020 Jan;577(7790):399–404.
50. Ciccocioppo F, Lanuti P, Pierdomenico L, Simeone P, Bologna G, Ercolino E, et al. The Characterization of Regulatory T-Cell Profiles in Alzheimer’s Disease and Multiple Sclerosis. Sci Rep. 2019 Jun 19;9(1):8788.
51. Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2016 Nov 29;87(22):2324–32.
52. Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep. 2017 Feb 8;7:41802.
53. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017 Jan;49:60–8.
54. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017 Oct 19;7(1):13537.
55. Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, et al. Gut Microbiota is Altered in Patients with Alzheimer’s Disease. J Alzheimers Dis JAD. 2018;63(4):1337–46.
56. Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019 Jan;5(1):eaau3333.
57. Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019 Oct;29(10):787–803.
58. Chen C, Ahn EH, Kang SS, Liu X, Alam A, Ye K. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer’s disease mouse model. Sci Adv. 2020 Jul;6(31):eaba0466.
59. Xia Y, Xiao Y, Wang ZH, Liu X, Alam AM, Haran JP, et al. Bacteroides Fragilis in the gut microbiomes of Alzheimer’s disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice. Nat Commun. 2023 Sep 6;14(1):5471.
60. Wasén C, Beauchamp LC, Vincentini J, Li S, LeServe DS, Gauthier C, et al. Bacteroidota inhibit microglia clearance of amyloid-beta and promote plaque deposition in Alzheimer’s disease mouse models. Nat Commun. 2024 May 8;15(1):3872.
61. Colombo AV, Sadler RK, Llovera G, Singh V, Roth S, Heindl S, et al. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition. eLife. 2021 Apr 13;10:e59826.
62. Grabrucker S, Marizzoni M, Silajdžić E, Lopizzo N, Mombelli E, Nicolas S, et al. Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis. Brain J Neurol. 2023 Dec 1;146(12):4916–34.
63. Pan RY, Zhang J, Wang J, Wang Y, Li Z, Liao Y, et al. Intermittent fasting protects against Alzheimer’s disease in mice by altering metabolism through remodeling of the gut microbiota. Nat Aging. 2022 Nov;2(11):1024–39.
64. Lv X, Zhan L, Ye T, Xie H, Chen Z, Lin Y, et al. Gut commensal Agathobacter rectalis alleviates microglia-mediated neuroinflammation against pathogenesis of Alzheimer disease. iScience. 2024 Nov 15;27(11):111116.
65. Prajapati SK, Wang S, Mishra SP, Jain S, Yadav H. Protection of Alzheimer’s disease progression by a human-origin probiotics cocktail. Sci Rep. 2025 Jan 10;15(1):1589.
66. Cao SQ, Wang HL, Palikaras K, Tavernarakis N, Fang EF. Chemotaxis assay for evaluation of memory-like behavior in wild-type and Alzheimer’s-disease-like C. elegans models. STAR Protoc. 2023 Apr 26;4(2):102250.
67. Sirin S, Aslim B. Characterization of lactic acid bacteria derived exopolysaccharides for use as a defined neuroprotective agent against amyloid beta1-42-induced apoptosis in SH-SY5Y cells. Sci Rep. 2020 May 15;10(1):8124.
68. Mihailovich M, Soković Bajić S, Dinić M, Đokić J, Živković M, Radojević D, et al. Cutting-Edge iPSC-Based Approaches in Studying Host-Microbe Interactions in Neuropsychiatric Disorders. Int J Mol Sci. 2024 Sep 21;25(18):10156.
69. Zhu G, Zhao J, Wang G, Chen W. Bifidobacterium breve HNXY26M4 Attenuates Cognitive Deficits and Neuroinflammation by Regulating the Gut-Brain Axis in APP/PS1 Mice. J Agric Food Chem. 2023 Mar 22;71(11):4646–55.
70. Sun J, Xu J, Yang B, Chen K, Kong Y, Fang N, et al. Effect of Clostridium butyricum against Microglia-Mediated Neuroinflammation in Alzheimer’s Disease via Regulating Gut Microbiota and Metabolites Butyrate. Mol Nutr Food Res. 2020 Jan;64(2):e1900636.
71. Foster SG, Mathew S, Labarre A, Parker JA, Tompkins TA, Binda S. Lacticaseibacillus rhamnosus HA-114 and Bacillus subtilis R0179 Prolong Lifespan and Mitigate Amyloid-β Toxicity in C. elegans via Distinct Mechanisms. J Alzheimers Dis JAD. 2024;101(1):49–60.
72. Tan FHP, Liu G, Lau SYA, Jaafar MH, Park YH, Azzam G, et al. Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer’s disease model and alleviated neurodegeneration in the eye. Benef Microbes. 2020 Feb 19;11(1):79–89.
73. Qu L, Liu F, Fang Y, Wang L, Chen H, Yang Q, et al. Improvement in Zebrafish with Diabetes and Alzheimer’s Disease Treated with Pasteurized Akkermansia muciniphila. Microbiol Spectr. 2023 Jun 15;11(3):e0084923.
74. Choo S, An M, Lim YH. Protective Effects of Heat-Killed Ruminococcus albus against β-Amyloid-Induced Apoptosis on SH-SY5Y Cells. J Microbiol Biotechnol. 2024 Jan 28;34(1):85–93.
75. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, et al. Effect of Probiotic Supplementation on Cognitive Function and Metabolic Status in Alzheimer’s Disease: A Randomized, Double-Blind and Controlled Trial. Front Aging Neurosci. 2016;8:256.
76. Tamtaji OR, Heidari-Soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, Aghadavod E, et al. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin Nutr Edinb Scotl. 2019 Dec;38(6):2569–75.
77. Ton AMM, Campagnaro BP, Alves GA, Aires R, Côco LZ, Arpini CM, et al. Oxidative Stress and Dementia in Alzheimer’s Patients: Effects of Synbiotic Supplementation. Oxid Med Cell Longev. 2020 Jan 13;2020:2638703.
78. Leblhuber F, Steiner K, Schuetz B, Fuchs D, Gostner JM. Probiotic Supplementation in Patients with Alzheimer’s Dementia - An Explorative Intervention Study. Curr Alzheimer Res. 2018 Oct;15(12):1106–13.
79. Agahi A, Hamidi GA, Daneshvar R, Hamdieh M, Soheili M, Alinaghipour A, et al. Does Severity of Alzheimer’s Disease Contribute to Its Responsiveness to Modifying Gut Microbiota? A Double Blind Clinical Trial. Front Neurol. 2018 Aug 15;9:662.
80. Hwang YH, Park S, Paik JW, Chae SW, Kim DH, Jeong DG, et al. Efficacy and Safety of Lactobacillus Plantarum C29-Fermented Soybean (DW2009) in Individuals with Mild Cognitive Impairment: A 12-Week, Multi-Center, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 2019 Feb 1;11(2):305.
81. Kobayashi Y, Kinoshita T, Matsumoto A, Yoshino K, Saito I, Xiao JZ. Bifidobacterium Breve A1 Supplementation Improved Cognitive Decline in Older Adults with Mild Cognitive Impairment: An Open-Label, Single-Arm Study. J Prev Alzheimers Dis. 2018 Aug 27;6(1):70–5.
82. Kobayashi Y, Kuhara T, Oki M, Xiao JZ. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef Microbes. 2019 May 28;10(5):511–20.
83. Asaoka D, Xiao J, Takeda T, Yanagisawa N, Yamazaki T, Matsubara Y, et al. Effect of Probiotic Bifidobacterium breve in Improving Cognitive Function and Preventing Brain Atrophy in Older Patients with Suspected Mild Cognitive Impairment: Results of a 24-Week Randomized, Double-Blind, Placebo-Controlled Trial. J Alzheimers Dis JAD. 2022;88(1):75–95.
84. Jung SJ, Cho K, Jung ES, Son D, Byun JS, Kim SI, et al. Augmenting Cognitive Function in the Elderly with Mild Cognitive Impairment Using Probiotic Lacticaseibacillus rhamnosus CBT-LR5: A 12-Week Randomized, Double-Blind, Parallel-Group Non-Comparative Study. Nutrients. 2025 Jan;17(4):691.
85. Xiao S, Chan P, Wang T, Hong Z, Wang S, Kuang W, et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res Ther. 2021 Mar 17;13(1):62.
86. Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019 Sep;47:529–42.
87. Hazan S. Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: a case report. J Int Med Res. 2020 Jun;48(6):300060520925930.
88. Park SH, Lee JH, Shin J, Kim JS, Cha B, Lee S, et al. Cognitive function improvement after fecal microbiota transplantation in Alzheimer’s dementia patient: a case report. Curr Med Res Opin. 2021 Oct;37(10):1739–44.
89. Park SH, Lee JH, Kim JS, Kim TJ, Shin J, Im JH, et al. Fecal microbiota transplantation can improve cognition in patients with cognitive decline and Clostridioides difficile infection. Aging. 2022 Aug 16;14(16):6449–66.
