Produkcija biofilma i pokretljivost po tipu trzanja i rojenja kliničkih izolata Acinetobacter baumannii

  • Jovana L Ranin Univerzitet u Beogradu, Medicinski fakultet
  • Aleksandra Šmitran Mikrobiologija Beograd
  • Ina Gajić

Sažetak


Uvod: Acinetobacter baumannii je ubikvitaran gram negativan bacil, koji zahvaljujući multirezistenciji i preživljavanju na neživim objektima u vidu biofilma, postaje sve češći uzročnik nozokomijalnih infekcija. Bakterije roda Acinetobacter poseduju pile koji imaju značajnu ulogu u adherenciji, ali i u pokretljivosti bakterija po tipu trzanja i rojenja.

Cilj: Cilj ovog rada je bio da se utvrdi sposobnost produkcije biofilma i pokretljivosti po tipu trzanja i rojenja kroz hranljivu podlogu kod sojeva A. baumannii izolovanih iz različitih kliničkih uzoraka.

Materijal i metode: Ukupno je testirano 128 izolata A. baumannii poreklom iz krvi (34), briseva rana (35), respiratornog trakta (39) i ostalih kliničkih materijala (20). Izolatima je ispitana sposobnost produkcije biofilma u mikrotitarskoj ploči na 26°C i 37°C tokom 24 sati i na 37°C tokom 48 sati. Prisustvo pila je ispitano testiranjem pokretljivosti po tipu trzanja i rojenja kroz polučvrstu hranljivu podlogu.

Rezultati: Preko 90% ispitivanih izolata je pokazalo umerenu ili izraženu sposobnost produkcije biofilma, nezavisno od uslova testiranja, pri čemu je sa produženjem vremena inkubacije uočeno smanjenje učestalosti jakih produktora biofilma (p < 0,001). Tokom 24-časovne inkubacije otkriveno je da su izolati iz rana i respiratornog trakta bili značajno češći u grupi jakih produktora biofilma u odnosu na izolate iz krvi i ostalih uzoraka. Nije uočena povezanost između specifičnih tipova pokretljivosti i produkcije biofilma.

Zaključak: Produkcija biofilma izolata A. baumannii je u ispitivanim uslovima bila relativno stabilna fenotipska osobina. Nije uočena povezanost kretanja po tipu trzanja i rojenja ispitivanih uzoraka sa produkcijom biofilma.

Ključne reči: Acinetobacter baumannii, biofilm, pokretljivost, pili

Reference

Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 2007; 5:939–951.

Poirel L, Nordmann P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-58 in Acinetobacter baumannii. Antimicrob Agents Chemother. 2006; 50:1442-1448.

Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2007; 51:3471-3484.

Karakoc C, Tekin R, Yeşilbağ Z, Cagatay A. Risk factors for mortality in patients with nosocomial Gram-negative rod bacteremia. Eur Rev Med Pharmacol Sci. 2013; 17:951-957.

Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002; 15:167-93.

Djeribi R, Boucherit Z, Bouchloukh W et al. A study of pH effects on the bacterial surface physicochemical properties of Acinetobacter baumannii. Colloids Surf B Biointerfaces. 2013; 102:540-545.

Costerton JW, Stewart PS. Battling biofilms. Sci Am 2001; 285:74-81.

Villegas MV, Hartstein A. Acinetobacter outbreaks, 1977-2000. Infect Control Hosp Epidemiol 2003; 24:284-295.

Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 2003; 149:3473-3484.

Eijkelkamp BA, Stroeher UH, Hassan KA, Papadimitrious MS, Paulsen IT, Brown MH. Adherence and motility characteristics of clinical Acinetobacter baumannii isolates. FEMS Microbiol Lett 2011; 323:44-51.

Subramaniyan A. Profile of multidrug resistant Acinetobacter baumannii infections among hospitalized patients. J Med Sci Clin Res 2017; 5:23111-23115.

Dunne WM Jr. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 2002 Apr; 15:155-66.

McQueary CN, Actis LA. Acinetobacter baumannii biofilms: variations among strains and correlations with other cell properties. J Microbiol. 2011; 49:243-50.

Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 2000; 40:175-9.

Clemmer KM, Bonomo RA, Rather PN. Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology 2011; 157:2534–2544.

Wu H, Moser C, Wang HZ, Høiby N, Song ZJ. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015; 7:1-7.

Rosini R, Margarit Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors. Front Cell Infect Microbiol. 2015; 5:6.

Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 2015; 80:7-12.

Fiedler T, Köller T, Kreikemeyer B. Streptococcus pyogenes biofilms-formation, biology, and clinical relevance. Front Cell Infect Microbiol 2015; 5:15.

De Breij A, Dijkshoorn L, Lagendijk E, et al. Do biofilm formation and interactions with human cells explain the Clinical Success of Acinetobacter baumannii? PLoS One. 2010; 5:e10732.

Obeidat N, Jawdat F, Al-Bakri AG, Shehabi AA. Major biologic characteristics of Acinetobacter baumannii isolates from hospital environmental and patients’ respiratory tract sources. Am J Infect Control 2014; 42:401-4.

Longo F, Vuotto C, Donelli G. Biofilm formation in Acinetobacter baumannii. New Microbiol 2014; 37:119-27.

Sanchez CJ Jr, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, Murray CK. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis. 2013; 13:47.

Vijayakumar S, Rajenderan S, Laishram S, Anandan S, Balaji V, Biswas I. Biofilm formation and motility depend on the nature of the Acinetobacter baumannii clinical isolates. Front Public Health 2016; 4:105.

Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 2013; 3:a010306.

Chow S, Gu K, Jiang L, Nassour A. Salicylic acid affects swimming, twitching and swarming motility in Pseudomonas aeruginosa, resulting in decreased biofilm formation. J Exp Microbiol Immunol 2011; 15:22–29.

Objavljeno
2019/01/15
Rubrika
Originalni naučni članak