INERVACIJA KOSTIJU: ZAŠTO JE NE TREBA ZANEMARITI?

  • Petar Milovanović Univerzitet u Beogradu, Medicinski fakultet u Beogradu, Laboratorija za antropologiju i biologiju skeleta
  • Marija Đurić Univerzitet u Beogradu, Medicinski fakultet u Beogradu, Laboratorija za antropologiju i biologiju skeleta

Sažetak


Kosti sadrže raznovrsnu mrežu senzornih, simpatičkih, pa čak i parasimpatičkih nervnih vlakana. Premda tačne uloge ovih vlakana nisu još uvek sasvim jasne, sve je više dokaza da ova vlakna imaju i aferentne i eferentne uloge. Osim prenošenja bolnih nadražaja, neke od uloga ovih vlakana su i regulacija koštanog remodelovanja, koštanog rasta i zarastanja preloma. Ovo ukazuje da dalja istraživanja inervacije kostiju mogu doprineti rasvetljavanju glavnih istraživačkih pitanja u oblasti koštane biologije, kao što su fragilnost kosti kod starijih osoba i u osteoporozi, promene u zarastanju preloma u različitim stanjima, kancerski bol, i drugo. Ovaj pregledni članak prikazuje osnovne morfološke i funkcionalne karakteristike koštane inervacije.

 

 

Biografija autora

Petar Milovanović, Univerzitet u Beogradu, Medicinski fakultet u Beogradu, Laboratorija za antropologiju i biologiju skeleta
docent, Institut za anatomiju

Reference

Moore KL, Dalley AF, Agur AMR. Clinically oriented anatomy. Philadelphia Wolters Kluwer Health; 2014.

Standring S, Gray H. Gray's anatomy : the anatomical basis of clinical practice. Philadelphia: Elsevier; 2016.

Ganong WF. Review of medical physiology. New York: McGraw Hill Companies; 2005.

Hall JE. Guyton & Hall physiology review. Philadelphia: Elsevier Saunders; 2016.

Mundy GR, Guise TA. Hormonal Control of Calcium Homeostasis. Clin Chem. 1999;45:1347-1352.

Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Püschel K, Djuric M, et al. Osteocytic Canalicular Networks: Morphological Implications for Altered Mechanosensitivity. ACS Nano. 2013;7:7542-7551.

O’Donnell PW, Clohisy DR. Biology of Bone Cancer Pain. In: Randall RL, ed. Metastatic Bone Disease: An Integrated Approach to Patient Care. New York, NY: Springer New York; 2016:37-44.

Zhu XC, Zhang JL, Ge CT, Yu YY, Wang P, Yuan TF, et al. Advances in cancer pain from bone metastasis. Drug Des Devel Ther. 2015;9:4239-4245.

Ivanusic JJ, Mahns DA, Sahai V, Rowe MJ. Absence of large-diameter sensory fibres in a nerve to the cat humerus. J Anat. 2006;208:251-255.

Hill EL, Elde R. Distribution of CGRP-, VIP-, DβH-, SP-, and NPY-immunoreactive nerves in the periosteum of the rat. Cell Tissue Res. 1991;264:469-480.

Serre CM, Farlay D, Delmas PD, Chenu C. Evidence for a dense and intimate innervation of the bone tissue, including glutamate-containing fibers. Bone. 1999;25:623-629.

Jimenez-Andrade JM, Bloom AP, Mantyh WG, Koewler NJ, Freeman KT, Delong D, et al. Capsaicin-sensitive sensory nerve fibers contribute to the generation and maintenance of skeletal fracture pain. Neuroscience. 2009;162:1244-1254.

Mach DB, Rogers SD, Sabino MC, Luger NM, Schwei MJ, Pomonis JD, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113:155-166.

Hohmann EL, Elde RP, Rysavy JA, Einzig S, Gebhard RL. Innervation of periosteum and bone by sympathetic vasoactive intestinal peptide-containing nerve fibers. Science. 1986;232:868-871.

Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci. 2014;39:508-519.

Nencini S, Ivanusic JJ. The Physiology of Bone Pain. How Much Do We Really Know? Front Physiol. 2016;7:157.

Castaneda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, et al. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience. 2011;178:196-207.

Jimenez-Andrade JM, Mantyh WG, Bloom AP, Xu H, Ferng AS, Dussor G, et al. A phenotypically restricted set of primary afferent nerve fibers innervate the bone versus skin: therapeutic opportunity for treating skeletal pain. Bone. 2010;46:306-313.

Chartier SR, Mitchell SAT, Majuta LA, Mantyh PW. The Changing Sensory and Sympathetic Innervation of the Young, Adult and Aging Mouse Femur. Neuroscience. 2018;in press, doi: 10.1016/j.neuroscience.2018.01.047.

Degmetich S, Bailey JF, Liebenberg E, Lotz JC. Neural innervation patterns in the sacral vertebral body. Eur Spine J. 2016;25:1932-1938.

Bailey JF, Liebenberg E, Degmetich S, Lotz JC. Innervation patterns of PGP 9.5-positive nerve fibers within the human lumbar vertebra. J Anat. 2011;218:263-270.

Grässel S. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther. 2014;16:485.

Martin CD, Jimenez-Andrade JM, Ghilardi JR, Mantyh PW. Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: Implications for the generation and maintenance of bone fracture pain. Neurosci Lett. 2007;427:148-152.

Yoneda T, Hiasa M, Nagata Y, Okui T, White F. Contribution of acidic extracellular microenvironment of cancer-colonized bone to bone pain. Biochim Biophys Acta. 2015;1848:2677-2684.

Grässel S, Muschter D. Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology. Int J Mol Sci. 2017;18:931.

Offley SC, Guo TZ, Wei T, Clark JD, Vogel H, Lindsey DP, et al. Capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity. J Bone Miner Res. 2005;20:257-267.

Zhang Z-K, Guo X, Lao J, Qin Y-X. Effect of capsaicin-sensitive sensory neurons on bone architecture and mechanical properties in the rat hindlimb suspension model. J Orthop Translat. 2017;10:12-17.

Schinke T, Liese S, Priemel M, Haberland M, Schilling AF, Catala-Lehnen P, et al. Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J Bone Miner Res. 2004;19:2049-2056.

Cornish J, Callon KE, Bava U, Kamona SA, Cooper GJ, Reid IR. Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. Bone. 2001;29:162-168.

Kingery WS, Offley SC, Guo TZ, Davies MF, Clark JD, Jacobs CR. A substance P receptor (NK1) antagonist enhances the widespread osteoporotic effects of sciatic nerve section. Bone. 2003;33:927-936.

Zheng XF, Zhao ED, He JY, Zhang YH, Jiang SD, Jiang LS. Inhibition of substance P signaling aggravates the bone loss in ovariectomy-induced osteoporosis. Prog Biophys Mol Biol. 2016;122:112-121.

Levi B. “TrkA”cking why “no pain, no gain” is the rule for bone formation. Sci Transl Med. 2017;9.

Tomlinson RE, Li Z, Minichiello L, Riddle RC, Venkatesan A, Clemens TL. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci USA. 2017;114:E3632-E3641.

Yoo Y-M, Kwag JH, Kim KH, Kim CH. Effects of Neuropeptides and Mechanical Loading on Bone Cell Resorption in Vitro. Int J Mol Sci. 2014;15:5874-5883.

Mukohyama H, Ransjo M, Taniguchi H, Ohyama T, Lerner UH. The inhibitory effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide on osteoclast formation are associated with upregulation of osteoprotegerin and downregulation of RANKL and RANK. Biochem Biophys Res Commun. 2000;271:158-163.

Cherruau M, Facchinetti P, Baroukh B, Saffar JL. Chemical sympathectomy impairs bone resorption in rats: a role for the sympathetic system on bone metabolism. Bone. 1999;25:545-551.

Mano T, Nishimura N, Iwase S. Sympathetic neural influence on bone metabolism in microgravity (Review). Acta Physiol Hung. 2010;97:354-361.

Neto E, Alves CJ, Sousa DM, Alencastre IS, Lourenco AH, Leitao L, et al. Sensory neurons and osteoblasts: close partners in a microfluidic platform. Integr Biol (Camb). 2014;6:586-595.

Kodama D, Hirai T, Kondo H, Hamamura K, Togari A. Bidirectional communication between sensory neurons and osteoblasts in an in vitro coculture system. FEBS Lett. 2017;591:527-539.

Asada K, Obata K, Horiguchi K, Takaki M. Age-related changes in afferent responses in sensory neurons to mechanical stimulation of osteoblasts in coculture system. Am J Phys Cell Physiol. 2012;302:C757-C765.

Obata K, Furuno T, Nakanishi M, Togari A. Direct neurite-osteoblastic cell communication, as demonstrated by use of an in vitro co-culture system. FEBS Lett. 2007;581:5917-5922.

Suga S, Goto S, Togari A. Demonstration of direct neurite-osteoclastic cell communication in vitro via the adrenergic receptor. J Pharmacol Sci. 2010;112:184-191.

Kodama D, Togari A. Signaling pathway and physiological role of the alpha-1 adrenergic receptor in human osteoblasts. J Oral Biosci. 2014;56:73-76.

McDonald SJ, Dooley PC, McDonald AC, Djouma E, Schuijers JA, Ward AR, et al. alpha(1) adrenergic receptor agonist, phenylephrine, actively contracts early rat rib fracture callus ex vivo. J Orthop Res. 2011;29:740-745.

Ma Y, Nyman JS, Tao H, Moss HH, Yang X, Elefteriou F. beta2-Adrenergic receptor signaling in osteoblasts contributes to the catabolic effect of glucocorticoids on bone. Endocrinol. 2011;152:1412-1422.

Hamajima K, Hamamura K, Chen A, Yokota H, Mori H, Yo S, et al. Suppression of osteoclastogenesis via α2-adrenergic receptors. Biomed Rep. 2018;8:407-416.

Jiao K, Niu L-N, Li Q-h, Ren G-t, Zhao C-m, Liu Y-d, et al. β2-adrenergic signal transduction plays a detrimental role in subchondral bone loss of temporomandibular joint in osteoarthritis. Sci Rep. 2015;5:12593.

Elefteriou F, Campbell P, Ma Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int. 2014;94:140-151.

Ma W, Zhang X, Shi S, Zhang Y. Neuropeptides stimulate human osteoblast activity and promote gap junctional intercellular communication. Neuropeptides. 2013;47:179-186.

Xie W, Dolder S, Siegrist M, Wetterwald A, Hofstetter W. Glutamate Receptor Agonists and Glutamate Transporter Antagonists Regulate Differentiation of Osteoblast Lineage Cells. Calcif Tissue Int. 2016;99:142-154.

Rolvien T, Schmidt FN, Milovanovic P, Jähn K, Riedel C, Butscheidt S, et al. Early bone tissue aging in human auditory ossicles is accompanied by excessive hypermineralization, osteocyte death and micropetrosis. Sci Rep. 2018;8:1920.

Rolvien T, Vom Scheidt A, Stockhausen K, Milovanovic P, Djonic D, Hubert J, et al. Inter-site variability of the osteocyte lacunar network in the cortical bone underpins fracture susceptibility of the superolateral femoral neck. Bone. 2018;112:187-193.

Milovanovic P, Zimmermann EA, vom Scheidt A, Hoffmann B, Sarau G, Yorgan T, et al. The Formation of Calcified Nanospherites during Micropetrosis Represents a Unique Mineralization Mechanism in Aged Human Bone. Small. 2017;13:1602215-n/a.

Milovanovic P, Zimmermann EA, Riedel C, Scheidt Av, Herzog L, Krause M, et al. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials. 2015;45:46-55.

Milovanovic P, Rakocevic Z, Djonic D, Zivkovic V, Hahn M, Nikolic S, et al. Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls. Exp Gerontol. 2014;55:19-28.

Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9:1065-1075.

En-Nosse M, Hartmann S, Trinkaus K, Alt V, Stigler B, Heiss C, et al. Expression of non-neuronal cholinergic system in osteoblast-like cells and its involvement in osteogenesis. Cell Tissue Res. 2009;338:203-215.

Bajayo A, Bar A, Denes A, Bachar M, Kram V, Attar-Namdar M, et al. Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proceedings of the National Academy of Sciences. 2012;109:15455-15460.

Schafer MK, Weihe E, Varoqui H, Eiden LE, Erickson JD. Distribution of the vesicular acetylcholine transporter (VAChT) in the central and peripheral nervous systems of the rat. J Mol Neurosci. 1994;5:1-26.

Objavljeno
2018/10/27
Rubrika
Pregledni članak