THE ROLE OF AMP-ACTIVATED PROTEIN KINASE IN NEURODEGENERATION IN PARKINSON’S DISEASE

  • Maja Jovanović Tucović Univerzitet u Beogradu, Medicinski fakultet, Institut za medicinku i kliničku biohemijui
  • Ivanka Marković Univerzitet u Beogradu, Medicinski fakultet, Institut za medicinsku i kliničku biohemiju

Sažetak


Parkinson’s disease (PD) is defined as chronic neurodegenerative disorder with a gradual demise of dopaminergic (DA) neurons in substantia nigra pars compacta. Although molecular mechanisms of DA neurons’ degeneration are still insufficiently understood, different studies based on animal, toxic and genetic models, as well as post-mortem brain tissue analyses revealed several common features of neuronal death in SN: mitochondrial dysfunction, increased ROS production and impaired proteostasis. Each of these mechanisms might be, at least in part, related to adenosine monophosphate activated protein kinase (AMPK). AMPK is a major intracellular energy sensor. It can be activated by different types of metabolic stress, mediated by at least three different kinases LKB1, CAMKKβ and TAK1, in conditions of decreased cellular ATP and/or increased Ca2+ level. Once activated, AMPK promotes catabolic pathways, inhibits mTORC1, and stimulates autophagy, mitochondrial biogenesis and turnover. Different studies revealed a growing body of evidence suggesting an important role of AMPK in PD. Many of them have documented protective effect of AMPK activation in different PD models by facilitating mitochondrial quality control, enhancing autophagic clearance of defective mitochondria and protein aggregates. However, some studies have shown the detrimental effect of AMPK activation in DA neurons in advanced stages of neuronal damage, where prolonged activation could inhibit protein synthesis and impair synaptic integrity and plasticity. In this review, we will try to summarize the literature data regarding the role of AMPK in PD pathogenesis.

Keywords: AMPK, Parkinson’s disease, mitochondria, autophagy

Reference

Ali SF, Binienda ZK, Imam SZ. Molecular aspects of dopaminergic neurodegeneration: Gene-environment interaction in parkin dysfunction. Vol. 8, International Journal of Environmental Research and Public Health. 2011. p. 4702–13.

Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, et al. Missing pieces in the Parkinson’s disease puzzle. Vol. 16, Nature Medicine. 2010. p. 653–61.

Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. XXXAlpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839–40.

Dauer W, Przedborski S. Parkinson ’ s Disease : Mechanisms and Models. Neuron. 2003;39:889–909.

Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol [Internet]. 2012;2012:845618. Available from: http://dx.doi.org/10.1155/2012/845618

Postuma RB, Aarsland D, Barone P, Burn DJ, Hawkes CH, Oertel W, et al. Identifying prodromal Parkinson’s disease: Pre-Motor disorders in Parkinson’s disease. Mov Disord. 2012;27(5):617–26.

Forno LS. Neuropathology of Parkinson's Disease. J Neuropathol & Exp Neurol [Internet]. 1996;55(3):259 LP-272. Available from: http://jnen.oxfordjournals.org/content/55/3/259.abstract

Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Vol. 318, Cell and Tissue Research. 2004. p. 121–34.

Chaudhuri KR, Schapira AH V. Non-motor symptoms of PD diagnosis and management. Lancet Neurol [Internet]. 2006;5:235–45. Available from: http://neurology.thelancet.com

Hardie DG, Ross F a., Hawley S a. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol [Internet]. 2012;13(4):251–62. Available from: http://dx.doi.org/10.1038/nrm3311

Laplante M, Sabatini DM. MTOR signaling in growth control and disease. Cell [Internet]. 2012;149(2):274–93. Available from: http://dx.doi.org/10.1016/j.cell.2012.03.017

Henchcliffe C, Beal FM. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Vol. 4, Nature Clinical Practice Neurology. 2008. p. 600–9.

Schwarting RKW, Huston JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol. 1996;49(3):215–66.

Ryan BJ, Hoek S, Fon EA, Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Vol. 40, Trends in Biochemical Sciences. 2015. p. 200–10.

Mayeux R. EPIDEMIOLOGY OF NEURODEGENERATION. Annu Rev Neurosci [Internet]. 2003;26(1):81–104. Available from: http://www.annualreviews.org/doi/10.1146/annurev.neuro.26.043002.094919

Marras C, Lang A, van de Warrenburg BP, Sue CM, Tabrizi SJ, Bertram L, et al. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Vol. 31, Movement Disorders. 2016. p. 436–57.

Houlden H, Singleton AB. The genetics and neuropathology of Parkinson’s disease. Vol. 124, Acta Neuropathologica. 2012. p. 325–38.

Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46(9):989–93.

Jenner P. Oxidative stress and Parkinson’s disease. In 2008. p. 507–20.

Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, del Razo LM, Quintanilla-Vega B, et al. Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival. Antioxid Redox Signal [Internet]. 2014;21(1):66–85. Available from: http://online.liebertpub.com/doi/abs/10.1089/ars.2014.5837

Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Vol. 21, Chemical Research in Toxicology. 2008. p. 172–88.

Zucca FA, Basso E, Cupaioli FA, Ferrari E, Sulzer D, Casella L, et al. Neuromelanin of the human substantia Nigra: An update. Vol. 25, Neurotoxicity Research. 2014. p. 13–23.

Nagatsu T, Sawada M. Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson’s disease: possible implications of glial cells. In: Oxidative Stress and Neuroprotection. 2006. p. 53–65.

Kumar MJ, Andersen JK. Perspectives on MAO-B in Aging and Neurological Disease: Where Do We Go From Here? Mol Neurobiol. 2004;30(1):077–90.

Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy‐Agid F, et al. Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol. 1994;36(3):348–55.

Sian-Hülsmann J, Mandel S, Youdim MBH, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. Vol. 118, Journal of Neurochemistry. 2011. p. 939–57.

Double KL, Ben-Shachar D, Youdim MBH, Zecca L, Riederer P, Gerlach M. Influence of neuromelanin on oxidative pathways within the human substantia nigra. Vol. 24, Neurotoxicology and Teratology. 2002. p. 621–8.

Hang L, Thundyil J, Lim KL. Mitochondrial dysfunction and Parkinson disease: a Parkin–AMPK alliance in neuroprotection. Ann N Y Acad Sci. 2015;1350(1):37–47.

Beyer RE. An Analysis of the Role of Coenzyme Q in Free Readical Generation and as an Antioxidant. Biochem Cell Biol [Internet]. 1991;70(6):390–403. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1333230

Takeshige K, Shigeki M. NADH- and NADPH-Dependent Formation of Superoxide Anions by Bovine Heart Submitochondrial Particles and NADH-Ubiquinone Reductase Preparation. BiochemJ. 1979;129–35.

Martin HL, Teismann P. Glutathione--a review on its role and significance in Parkinson’s disease. FASEB J [Internet]. 2009;23(10):3263–72. Available from: http://www.fasebj.org/cgi/doi/10.1096/fj.08-125443

Xin JC, Butow RA. The organization and inheritance of the mitochondrial genome. Vol. 6, Nature Reviews Genetics. 2005. p. 815–25.

Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, et al. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res. 1979;1(3):249–54.

Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science [Internet]. 1983;219(4587):979–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/6823561

Schapira AH, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem [Internet]. 1990;54(3):823–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2154550

Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ. The Role of Autophagy in Parkinson’s Disease. Cold Spring Harb Perspect Med. 2012;1–14.

Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. α-Synuclein Locus Triplication Causes Parkinson’s Disease. Science (80- ). 2003;302(5646):841.

Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science (80- ). 1997;276(5321):2045–7.

Valente EM, Arena G, Torosantucci L, Gelmetti V. Molecular pathways in sporadic PD. Park Relat Disord. 2012;18(SUPPL. 1).

Xilouri M, Vogiatzi T, Vekrellis K, Stefanis L. Alpha-synuclein degradation by autophagic pathways (article addendum). Autophagy. 2008;4(7):917–9.

Xilouri M, Stefanis L. Autophagic pathways in Parkinson disease and related disorders. Expert Rev Mol Med. 2011;13.

Curry DW, Stutz B, Andrews ZB, Elsworth JD. Targeting AMPK signaling as a neuroprotective strategy in Parkinson’s disease. Vol. 8, Journal of Parkinson’s Disease. 2018. p. 161–81.

Weisová P, Dávila D, Tuffy LP, Ward MW, Concannon CG, Prehn JHM. Role of 5′-Adenosine Monophosphate-Activated Protein Kinase in Cell Survival and Death Responses in Neurons. Antioxid Redox Signal [Internet]. 2011;14(10):1863–76. Available from: http://www.liebertonline.com/doi/abs/10.1089/ars.2010.3544

Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B, et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med [Internet]. 2009;46(10):1386–91. Available from: http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.019

Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W, et al. ROS signaling under metabolic stress: Cross-talk between AMPK and AKT pathway. Vol. 16, Molecular Cancer. 2017.

Zimmermann K, Baldinger J, Mayerhofer B, Atanasov AG, Dirsch VM, Heiss EH. Activated AMPK boosts the Nrf2/HO-1 signaling axis - A role for the unfolded protein response. Free Radic Biol Med. 2015;88(Part B):417–26.

Marinangeli C, Didier S, Vingtdeux V. AMPK in Neurodegenerative Diseases: Implications and Therapeutic Perspectives. Curr Drug Targets [Internet]. 2016;17(8):890–907. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26073858

Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74.

Chaube B, Bhat MK. AMPK, a key regulator of metabolic/energy homeostasis and mitochondrial biogenesis in cancer cells. Cell Death Dis [Internet]. 2016;7(1):e2044. Available from: http://www.nature.com/doifinder/10.1038/cddis.2015.404

Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. British Journal of Clinical Pharmacology. 2016. p. 1245–66.

Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Vol. 168, Cell. 2017. p. 960–76.

Inoki K, Zhu T, Guan K-L. TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell [Internet]. 2003;115(5):577–90. Available from: http://www.sciencedirect.com/science/article/pii/S0092867403009292

Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Mol Cell. 2008;30(2):214–26.

Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297–305.

Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science (80- ). 2011;331(6016):456–61.

Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.

Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013;15(7):741–50.

Weerasekara VK, Thompson JW, Panek DJ, Logan GN, Thomson DM, Mathis AD, et al. Metabolic-Stress-Induced Rearrangement of the 14-3-3 Interactome Promotes Autophagy via a ULK1- and AMPK-Regulated 14-3-3 Interaction with Phosphorylated Atg9. Mol Cell Biol. 2014;

Imai K, Hao F, Fujita N, Tsuji Y, Oe Y, Araki Y, et al. Atg9A trafficking through the recycling endosomes is required for autophagosome formation. J Cell Sci. 2016;129(20):3781–91.

Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 2013;152(1–2):290–303.

Zhang D, Wang W, Sun X, Xu D, Wang C, Zhang Q, et al. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy. 2016;12(9):1447–59.

Settembre C, Di Malta C, Polito VA, Arencibia MG, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science (80- ). 2011;332(6036):1429–33.

Sardiello M, Palmieri M, Ronza A Di, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science (80- ). 2009;325(5939):473–7.

Song W, Wang F, Savini M, Ake A, di ronza A, Sardiello M, et al. TFEB regulates lysosomal proteostasis. Hum Mol Genet. 2013;22(10):1994–2009.

Chen H, Chan DC. Mitochondrial Dynamics in Mammals. Curr Top Dev Biol. 2004;59:119–44.

Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Vol. 337, Science. 2012. p. 1062–5.

Qi X, Qvit N, Su Y-C, Mochly-Rosen D. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci [Internet]. 2013;126(3):789–802. Available from: http://jcs.biologists.org/cgi/doi/10.1242/jcs.114439

Toyama EQ, Herzig S, Courchet J, Lewis Jr. TL, Losón OC, Hellberg K, et al. AMP-activated protein kinase mediates mitochondrial fission in. Science (80- ). 2016;351(6270):275–81.

Jager S, Handschin C, St.-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1 . Proc Natl Acad Sci [Internet]. 2007;104(29):12017–22. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0705070104

Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet. 1998;18(3):231–6.

Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, et al. Aging-Associated Reductions in AMP-Activated Protein Kinase Activity and Mitochondrial Biogenesis. Cell Metab. 2007;5(2):151–6.

Kim TW, Cho HM, Choi SY, Suguira Y, Hayasaka T, Setou M, et al. (ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson’s disease. Cell Death Dis. 2013;4(11).

Ismaiel AAK, Espinosa-Oliva AM, Santiago M, García-Quintanilla A, Oliva-Martín MJ, Herrera AJ, et al. Metformin, besides exhibiting strong in vivo anti-inflammatory properties, increases mptp-induced damage to the nigrostriatal dopaminergic system. Toxicol Appl Pharmacol. 2016;298:19–30.

Jiang P, Gan M, Ebrahim AS, Castanedes-casey M, Dickson D, Yen S. AMPK over-activation leads to accumulation of α-synuclein oligomers and decrease of neurites. Neurobiol Aging. 2013;34(5):1504–15.

Kang SS, Zhang Z, Liu X, Manfredsson FP, He L, Iuvone PM, et al. α-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation. Proc Natl Acad Sci [Internet]. 2017;114(5):1183–8. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1618627114

Choi JS, Park C, Jeong JW. AMP-activated protein kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochem Biophys Res Commun. 2010;391(1):147–51.

Lu M, Su C, Qiao C, Bian Y, Ding J, Hu G. Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson’s disease via autophagy and mitochondrial ROS clearance. Int J Neuropsychopharmacol. 2016;

Hou Y-S, Guan J-J, Xu H-D, Wu F, Sheng R, Qin Z-H. Sestrin2 Protects Dopaminergic Cells against Rotenone Toxicity through AMPK-Dependent Autophagy Activation. Mol Cell Biol. 2015;35(16):2740–51.

Li X, Geng J, Liu J. Adiponectin offers protection against L166P mutant DJ-1-induced neuronal cytotoxicity mediated by APPL1-dependent AMPK activation. Int J Neurosci. 2014;124(5):350–61.

Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L, Kravic-Stevovic T, et al. The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol Dis. 2014;63:1–11.

Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, et al. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. NeuroSignals. 2011;19(3):163–74.

Bobela W, Nazeeruddin S, Knott G, Aebischer P, Schneider BL. Modulating the catalytic activity of AMPK has neuroprotective effects against α-synuclein toxicity. Mol Neurodegener. 2017;12(1).

Gao J, Perera G, Bhadbhade M, Halliday GM, Dzamko N. Autophagy activation promotes clearance of α-synuclein inclusions in fibril-seeded human neural cells. J Biol Chem. 2019;jbc.RA119.008733.

Ng C-H, Guan MSH, Koh C, Ouyang X, Yu F, Tan E-K, et al. AMP Kinase Activation Mitigates Dopaminergic Dysfunction and Mitochondrial Abnormalities in Drosophila Models of Parkinson’s Disease. J Neurosci [Internet]. 2012;32(41):14311–7. Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.0499-12.2012

Ferretta A, Gaballo A, Tanzarella P, Piccoli C, Capitanio N, Nico B, et al. Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta - Mol Basis Dis. 2014;1842(7):902–15.

Objavljeno
2019/12/31
Rubrika
Mini pregledni članak