PRIMENA MAGNETNE REZONACIJE U DIJAGNOSTICI NAJČEŠĆIH SPINOCEREBELARNIH ATAKSIJA

  • Olivera Tamaš
Ključne reči: spinocerebelarna ataksija, magnetna rezonancija, dijagnostika

Sažetak


Spinocerebelarne ataksije (SCA) predstavljaju heterogenu grupu autozomno dominantnih ataksija koje se manifestuju dominantno progresivnim razvojem cerebelarnog sindroma, ali i različitim stepenom prisustva ekstracerebelarnih simptoma i znakova. Danas postoji preko 40 genetski determinisanih SCA a u ovom radu su opisane klinička slika i nalazi magnetne rezonancije (MR) najčešćih SCA u Evropi i Srbiji. To su bolesti koje su prouzrokovane mutacijama u vidu ekspanzija CAG ponovaka, pripadaju poliglutaminskim bolestima a karakteriše ih gubitak neuralnog volumena pre svega cerebeluma i kičmene moždine. Magnetna rezonancija u dijagnostičkom postupku ima suštinski važnu ulogu kako bi se isključila strukturna oštećenja, koja mogu biti uzrok ataksije. Pored toga gubitak volumena verifikovan primenom MR predstavlja na neki način biomarker, kojim se može pratiti prirodna progresija različitih podtipova ove bolesti. Nalazi MR u grupi ovih oboljenja se karakterišu kortiko-cerebelarnom atrofijom, atrofijom kičmene moždine, olivoponto- cerebelarnom atrofijom ili različitim kombinacijama istih. Nažalost, ne postoji patognomoničan MR znak ili kombinacija znakova, pored toga postoje i značajna preklapanja MR nalaza u pojedinim podrgupama SCA, pogotovu u početku bolesti. Ipak poznavanje određenih razlika u obrascu atrofije moždanih struktura, uz prisustvo drugih kliničkih karakteristika značajno nam može pomoći u dijagnostičkom usmeravanju.

Reference

 


1.      Reetz K, Costa AS, Mirzazade S, Lehmann A, Juzek A, Rakowicz M, et al. Genotype-specific patterns of atrophy progression are more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain. 2013;136:905–17.


2.      Hara D, Maki F, Tanaka S, Sasaki R, Hasegawa Y. MRI-based cerebellar volume measurements correlate with the International Cooperative Ataxia Rating Scale score in patients with spinocerebellar degeneration or multiple system atrophy. Cerebellum Ataxias. 2016 Aug 17;3:14.


3.      Meira AT, Arruda WO, Ono SE, de Carvalho Neto A, Raskin S, Camargo CHF, et al. Neuroradiological Findings in the Spinocerebellar Ataxias. Tremor and Other Hyperkinetic Movements. 2019;9


4.      Nibbeling, E.A.R.; Duarri, A.; Verschuuren-Bemelmans, C.C.; Fokkens, M.R.; Karjalainen, J.M.; Smeets, C.J.L.M. et al. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 2017, 140, 2860–2878.


5.      Dragašević NT, Culjković B, Klein C, Ristić A, Keckarević M, Topisirović I et al. Frequency analysis and clinical characterization of different types of spinocerebellar ataxia in Serbian patients. Mov Disord. 2006 Feb;21(2):187-91.


6.      Pedroso JL, Barsottini OG (2013) Spinal cord atrophy in spinocerebellar ataxia type 1. Arq Neuropsiquiatr 71(12):977.


7.      Mandelli ML, De Simone T, Minati L, Bruzzone MG, Mariotti C, Fancellu R, et al. Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2. AJNR Am J Neuroradiol. 2007 Nov-Dec;28(10):1996-2000.


8.      Martins CR Jr, Martinez ARM, de Rezende TJR, Branco LMT, Pedroso JL, Barsottini OGP et al. Spinal Cord Damage in Spinocerebellar Ataxia Type 1. Cerebellum. 2017 Aug;16(4):792-796.


9.      Velázquez-Pérez LC, Rodríguez-Labrada R, Fernandez-Ruiz J. Spinocerebellar Ataxia Type 2: Clinicogenetic Aspects, Mechanistic Insights, and Management Approaches. Front Neurol. 2017 Sep 11;8:472.


10.   Peng L, Peng Y, Chen Z, Wang C, Long Z, Peng H, et al. The progression rate of spinocerebellar ataxia type 3 varies with disease stage. J Transl Med. 2022 May 14;20(1):226.


11.   Eichler L, Bellenberg B, Hahn HK, Köster O, Schöls L, Lukas C. Quantitative assessment of brain stem and cerebellar atrophy in spinocerebellar ataxia types 3 and 6: impact on clinical status. AJNR Am J Neuroradiol 2011;32:890–7.


12.   Lukas C, Hahn HK, Bellenberg B, Hellwig K, Globas C, Schimrigk SK, et al. Spinal cord atrophy in spinocerebellar ataxia type 3 and 6 : impact on clinical disability. J Neurol. 2008 Aug;255(8):1244-9.


13.   Benton CS, de Silva R, Rutledge SL, Bohlega S, Ashizawa T, Zoghbi HY (1998) Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. Neurology 51(4):1081–1086.


14.   Hugosson T, Gränse L, Ponjavic V, Andréasson S. Macular dysfunction and morphology in spinocerebellar ataxia type 7 (SCA 7). Ophthalmic Genet. 2009 Mar;30(1):1-6.


15.   lbuquerque MV, Pedroso JL, Braga Neto P, Barsottini OG. Phenotype variability and early onset ataxia symptoms in spinocerebellar ataxia type 7: comparison and correlation with other spinocerebellar ataxias. Arq Neuropsiquiatr. 2015 Jan;73(1):18-21.


16.   Lebre AS, Brice A. Spinocerebellar ataxia 7 (SCA 7). Cytogenet Genome Res. 2003;100(1-4):154-63.


17.   Alcauter S, Barrios FA, Díaz R, Fernández-Ruiz J. Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study. Neuroimage. 2011 Mar 1;55(1):1-7.


18.   Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, et al. SCA 17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet. 2001 Jul 1;10(14):1441-8.


 


19.  Döhlinger S, Hauser TK, Borkert J, Luft AR, Schulz JB. Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum. 2008;7(2):204-14. 

Objavljeno
2023/08/23
Rubrika
Mini pregledni članak