Primena sistema virtualne realnosti u tretmanu motornih poremećaja kod dece sa cerebralnom paralizom

  • Saša Stanisavljević Univerzitet u Beogradu – Fakultet za specijalnu edukaciju i rehabilitaciju, Beograd, Srbija
  • Goran Nedović Univerzitet u Beogradu – Fakultet za specijalnu edukaciju i rehabilitaciju, Beograd, Srbija https://orcid.org/0000-0002-5195-2963
Ključne reči: virtuelna realnost, motorika, rehabilitacija, cerebralna paraliza

Sažetak


Uvod: Virtuelna realnost predstavlja kompjuterski generisanu interaktivnu simulaciju stvarnosti koja pruža širok dijapazon mogućnosti za kreiranje delotvornih terapijskih programa. Upotreba sistema virtuelne realnosti u rehabilitaciji dece sa cerebralnom paralizom, je relativno novijeg datuma. Cilj: Cilj ovog preglednog rada je da, na osnovu dostupne literature, ustanovi nivo efikasnosti rehabilitacionih intervencija zasnovanih na sistemima virtuelne realnosti u tretmanu motornih poremećaja kod dece sa cerebralnom paralizom. Metode: Na osnovu inicijalne pretrage identifikovano je 63 naučna rada (istraživačka izveštaja). Primenom kriterijuma selekcije izdvojeno je devet radova koji su ispunjavali zadate kriterijume i time ušli u dalji proces analize. Posebna pažnja prilikom analize radova posvećena je: ishodima terapijskih procedura, odnosno postignutim rezultatima, kao i analizi odabira sistema virtuelne realnosti koji će se korititi u rehabilitaciji i pristupačnosti ovih sistema za komercijalnu i kliničku primenu. Rezultati: Rezultati analize nivoa efikasnosti rehabilitacionih intervencija dali su kontradiktorne nalaze. Pored studija koje svedoče o nedvosmisleno pozitivnim efektima primene sistema virtuelne realnosti u rehabilitaciji dece sa cerebralnom paralizom, postoje i one u kojima je evidentno da taj efekat izostaje. Zaključak: Opšti zaključak ovog rada je da sistemi virtuelne realnosti imaju veliki potencijal za primenu u oblasti rehabilitacije motornih poremećaja, ali i da ova oblast još uvek nije dovoljno istražena i zahteva dalje angažovanje kako bi se napravio korak više u cilju opravdavanja ili osporavanja njihove primene.

Reference

Adomavičienė, A., Daunoravičienė, K., Kubilius, R., Varžaitytė, L., & Raistenskis, J. (2019). Influence of new technologies on post-stroke rehabilitation: A comparison of Armeo Spring to the Kinect system. Medicina, 55(4), Article 98. https://doi.org/10.3390/medicina55040098

Aida, J., Chau, B., & Dunn, J. (2018). Immersive virtual reality in traumatic brain injury rehabilitation: A literature review. NeuroRehabilitation, 42(4), 441-448. https://doi.org/10.3233/NRE-172361

Amirmudin, N. A., Lavelle, G., Theologis, T., Thompson, N., & Ryan, J. M. (2019). Multilevel surgery for children with cerebral palsy: A meta-analysis. Pediatrics, 143(4), Article e20183390. https://doi.org/10.1542/peds.2018-3390

Arnoni, J. L. B., Pavão, S. L., dos Santos Silva, F. P., & Rocha, N. A. C. F. (2019). Effects of virtual reality in body oscillation and motor performance of children with cerebral palsy: A preliminary randomized controlled clinical trial. Complementary Therapies in Clinical Practice, 35, 189-194. https://doi.org/10.1016/j.ctcp.2019.02.014

Ayed, I., Ghazel, A., Jaume-i-Capó, A., Moyà-Alcover, G., Varona, J., & Martínez-Bueso, P. (2019). Vision-based serious games and virtual reality systems for motor rehabilitation: A review geared toward a research methodology. International Journal of Medical Informatics, 131, Article 103909. https://doi.org/10.1016/j.ijmedinf.2019.06.016

Beretta, E., Cesareo, A., Biffi, E., Schafer, C., Galbiati, S., & Strazzer, S. (2018). Rehabilitation of upper limb in children with acquired brain injury: A preliminary comparative study. Journal of Healthcare Engineering, 2018, Article 4208492. https://doi.org/10.1155/2018/4208492

Bonnechère, B., Jansen, B., Omelina, L., & Van Sint Jan, S. (2016). The use of commercial video games in rehabilitation: A systematic review. International Journal of Rehabilitation Research, 39(4), 277-290. https://doi.org/10.1097/MRR.0000000000000190

Booth, A. T., Buizer, A. I., Harlaar, J., Steenbrink, F., & van der Krogt, M. M. (2019). Immediate effects of immersive biofeedback on gait in children with cerebral palsy. Archives of Physical Medicine and Rehabilitation, 100(4), 598-605. https://doi.org/10.1016/j.apmr.2018.10.013

Brütsch, K., Koenig, A., Zimmerli, L., Mérillat-Koeneke, S., Riener, R., Jäncke, L., Van Hedel, H. J. A., & Meyer-Heim, A. (2011). Virtual reality for enhancement of robot-assisted gait training in children with neurological gait disorders. Journal of Rehabilitation Medicine, 43(6), 493-499. https://doi.org/10.2340/16501977-0802

Calabrò, R. S., Russo, M., Naro, A., Milardi, D., Balletta, T., Leo, A., Filoni, S., & Bramanti, P. (2016). Who may benefit from Armeo Power treatment? A neurophysiological approach to predict neurorehabilitation outcomes. PM and R, 8(10), 971-978. https://doi.org/10.1016/j.pmrj.2016.02.004

Cavalcante Neto, J. L., de Oliveira, C. C., Greco, A. L., Zamunér, A. R., Moreira, R. C., & Tudella, E. (2019). Is virtual reality effective in improving the motor performance of children with developmental coordination disorder? A systematic review. European Journal of Physical and Rehabilitation Medicine, 55(2), 291-300. https://doi.org/10.23736/S1973-9087.18.05427-8

Cho, C., Hwang, W., Hwang, S., & Chung, Y. (2016). Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku Journal of Experimental Medicine, 238(3), 213-218. https://doi.org/10.1620/tjem.238.213

Christy, J. B., Chapman, C. G., & Murphy, P. (2012). The effect of intense physical therapy for children with cerebral palsy. Journal of Pediatric Rehabilitation Medicine, 5(3), 159-170. https://doi.org/10.3233/PRM-2012-0208

Clark, W. E., Sivan, M., & O’Connor, R. J. (2019). Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review. Journal of Rehabilitation and Assistive Technologies Engineering, 6, Article 205566831986355. https://doi.org/10.1177/2055668319863557

De Araújo, A. V. L., Neiva, J. F. D. O., Monteiro, C. B. D. M., & Magalhães, F. H. (2019). Efficacy of virtual reality rehabilitation after spinal cord injury: A systematic review. BioMed Research International, 2019, Article 7106951. https://doi.org/10.1155/2019/7106951

Dockx, K., Van den Bergh, V., Bekkers, E. M. J., Ginis, P., Rochester, L., Hausdorff, J. M., Mirelman, A., & Nieuwboer, A. (2013). Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database of Systematic Reviews, 2013(10), Article CD010760. https://doi.org/10.1002/14651858.CD010760

Donath, L., Rössler, R., & Faude, O. (2016). Effects of virtual reality training (exergaming) compared to alternative exercise training and passive control on standing balance and functional mobility in healthy community-dwelling seniors: A meta-analytical review. Sports Medicine, 46(9), 1293-1309. https://doi.org/10.1007/s40279-016-0485-1

El-Shamy, S. M. (2018). Efficacy of Armeo® robotic therapy versus conventional therapy on upper limb function in children with hemiplegic cerebral palsy. American Journal of Physical Medicine and Rehabilitation, 97(3), 164-169. https://doi.org/10.1097/PHM.0000000000000852

El-Shamy, S., & Alsharif, R. (2017). Effect of virtual reality versus conventional physiotherapy on upper extremity function in children with obstetric brachial plexus injury. Journal of Musculoskeletal Neuronal Interactions, 17(4), 319-326.

Franki, I., Desloovere, K., De Cat, J., Feys, H., Molenaers, G., Calders, P., Vanderstraeten, G., Himpens, E., & Van den Broeck, C. (2012). The evidence-base for basic physical therapy techniques tar geting lower limb function in children with cerebral palsy: A systematic review using the International Clasificati of Functioning, Disability and Health as a conceptual framework. Journal of Rehabilitation Medicine, 44(5), 385-395. https://doi.org/10.2340/16501977-0983

Gagliardi, C., Turconi, A. C., Biffi, E., Maghini, C., Marelli, A., Cesareo, A., Diella, E., & Panzeri, D. (2018). Immersive virtual reality to improve walking abilities in cerebral palsy: A pilot study. Annals of Biomedical Engineering, 46(9), 1376-1384. https://doi.org/10.1007/s10439-018-2039-1

Glegg, S. M. N., Tatla, S. K., & Holsti, L. (2014). The GestureTek virtual reality system in rehabilitation: A scoping review. Disability and Rehabilitation: Assistive Technology, 9(2), 89-111. https://doi.org/10.3109/17483107.2013.799236

Golomb, M. R., Warden, S. J., Fess, E., Rabin, B., Yonkman, J., Shirley, B., & Burdea, G. C. (2011). Maintained hand function and forearm bone health 14 months after an in-home virtual-reality videogame hand telerehabilitation intervention in an adolescent with hemiplegic cerebral palsy. Journal of Child Neurology, 26(3), 389-393. https://doi.org/10.1177/0883073810394847

Gómez Álvarez, N., Venegas Mortecinos, A., Zapata Rodríguez, V., López Fontanilla, M., Maudier Vásquez, M., Pavez-Adasme, G., & Hernández-Mosqueira, C. (2018). Effect of an intervention based on virtual reality on motor development and postural control in children with Down syndrome. Revista Chilena de Pediatria, 89(6), 747-752. https://doi.org/10.4067/S0370-41062018005001202

Gorini, A., Capideville, C. S., De Leo, G., Mantovani, F., & Riva, G. (2011). The role of immersion and narrative in mediated presence: The virtual hospital experience. Cyberpsychology, Behavior and Social Networking, 14(3), 99-105. https://doi.org/10.1089/cyber.2010.0100

Harris, K., & Reid, D. (2005). The influence of virtual reality play on children’s motivation. Canadian Journal of Occupational Therapy, 72(1), 21-29. https://doi.org/10.1177/000841740507200107

Jung, S. H., Song, S. H., Kim, S. D., Lee, K., & Lee, G. C. (2018). Does virtual reality training using the Xbox Kinect have a positive effect on physical functioning in children with spastic cerebral palsy? A case series. Journal of Pediatric Rehabilitation Medicine, 11(2), 95-101. https://doi.org/10.3233/PRM-160415

Kassee, C., Hunt, C., Holmes, M. W. R., & Lloyd, M. (2017). Home-based Nintendo Wii training to improve upper-limb function in children ages 7 to 12 with spastic hemiplegic cerebral palsy. Journal of Pediatric Rehabilitation Medicine, 10(2), 145-154. https://doi.org/10.3233/PRM-170439

Kerem, M., Kaya, O., Ozal, C., & Turker, D. (2014). Virtual reality in rehabilitation of children with cerebral palsy. In E. Švraka (Ed.), Cerebral Palsy – Challenges for the Future (pp. 273-301). InTech. http://dx.doi.org/10.5772/57486

Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, 2017(11), Article CD008349. https://doi.org//10.1002/14651858.CD008349.pub4

Lee, K. H. (2015). Effects of a virtual reality-based exercise program on functional recovery in stroke patients: Part 1. Journal of Physical Therapy Science, 27(6), 1637-1640. https://doi.org/10.1589/jpts.27.1637

Levac, D., Glegg, S. M. N., Sveistrup, H., Colquhoun, H., Miller, P. A., Finestone, H., DePaul, V., Harris, J. E., & Velikonja, D. (2016). A knowledge translation intervention to enhance clinical application of a virtual reality system in stroke rehabilitation. BMC Health Services Research, 16(1), Article 557. https://doi.org/10.1186/s12913-016-1807-6

Levac, D., McCormick, A., Levin, M. F., Brien, M., Mills, R., Miller, E., & Sveistrup, H. (2018). Active video gaming for children with cerebral palsy: Does a clinic-based virtual reality component offer an additive benefit? A pilot study. Physical and Occupational Therapy in Pediatrics, 38(1), 74-87. https://doi.org/10.1080/01942638.2017.1287810

Levinger, P., Zeina, D., Teshome, A. K., Skinner, E., Begg, R., & Abbott, J. H. (2016). A real time biofeedback using Kinect and Wii to improve gait for post-total knee replacement rehabilitation: A case study report. Disability and Rehabilitation: Assistive Technology, 11(3), 251-262. https://doi.org/10.3109/17483107.2015.1080767

Lotan, M., Yalon-Chamovitz, S., & Weiss, P. L. T. (2010). Virtual reality as means to improve physical fitness of individuals at a severe level of intellectual and developmental disability. Research in Developmental Disabilities, 31(4), 869-874. https://doi.org/10.1016/j.ridd.2010.01.010

Maggio, M. G., Russo, M., Cuzzola, M. F., Destro, M., La Rosa, G., Molonia, F., Bramanti, P., Lombardo, G., De Luca, R., & Calabrò, R. S. (2019). Virtual reality in multiple sclerosis rehabilitation: A review on cognitive and motor outcomes. Journal of Clinical Neuroscience, 65, 106-111. https://doi.org/10.1016/j.jocn.2019.03.017

Mao, Y., Chen, P., Li, L., & Huang, D. (2014). Virtual reality training improves balance function. Neural Regeneration Research, 9(17), 1628-1634. https://doi.org/10.4103/1673-5374.141795

Massetti, T., da Silva, T. D., Crocetta, T. B., Guarnieri, R., de Freitas, B. L., Bianchi Lopes, P., Watson, S., Tonks, J., & de Mello Monteiro, C. B. (2018). The clinical utility of virtual reality in neurorehabilitation: A systematic review. Journal of Central Nervous System Disease, 10, 1-18. https://doi.org/10.1177/1179573518813541

McCoy, S. W., Palisano, R., Avery, L., Jeffries, L., Laforme Fiss, A., Chiarello, L., & Hanna, S. (2020). Physical, occupational, and speech therapy for children with cerebral palsy. Developmental Medicine and Child Neurology, 62(1), 140-146. https://doi.org/10.1111/dmcn.14325

Meyer-Heim, A., & van Hedel, H. J. A. (2013). Robot-assisted and computer-enhanced therapies for children with cerebral palsy: Current state and clinical implementation. Seminars in Pediatric Neurology, 20(2), 139-145. https://doi.org/10.1016/j.spen.2013.06.006

Meyns, P., Pans, L., Plasmans, K., Heyrman, L., Desloovere, K., & Molenaers, G. (2017). The effect of additional virtual reality training on balance in children with cerebral palsy after lower limb surgery: A feasibility study. Games for Health Journal, 6(1), 39-48. https://doi.org/10.1089/g4h.2016.0069

Mills, R., Levac, D., & Sveistrup, H. (2019). The effects of a 5-day virtual-reality based exercise program on kinematics and postural muscle activity in youth with cerebral palsy. Physical and Occupational Therapy in Pediatrics, 39(4), 388-403. https://doi.org/10.1080/01942638.2018.1505801

Mubin, O., Alnajjar, F., Jishtu, N., Alsinglawi, B., & Al Mahmud, A. (2019). Exoskeletons with virtual reality, augmented reality, and gamification for stroke patients’ rehabilitation: Systematic review. JMIR Rehabilitation and Assistive Technologies, 6(2), Article e12010. https://doi.org/10.2196/12010

Nicolini-Panisson, R. D. A., Tedesco, A. P., Folle, M. R., & Donadio, M. V. F. (2018). Selective dorsal rhizotomy in cerebral palsy: Selection criteria and postoperative physical therapy protocols. Revista Paulista de Pediatria, 36(1), 100-108. https://doi.org/10.1590/1984-0462/;2018;36;1;00005

Osumi, M., Inomata, K., Inoue, Y., Otake, Y., Morioka, S., & Sumitani, M. (2019). Characteristics of phantom limb pain alleviated with virtual reality rehabilitation. Pain Medicine, 20(5), 1038-1046. https://doi.org/10.1093/pm/pny269

Perez-Marcos, D., Solazzi, M., Steptoe, W., Oyekoya, O., Frisoli, A., Weyrich, T., Steed, A., Tecchia, F., Slater, M., & Sanchez-Vives, M. V. (2012). A fully immersive set-up for remote interaction and neurorehabilitation based on virtual body ownership. Frontiers in Neurology, 3, Article 110. https://doi.org/10.3389/fneur.2012.00110

Potić, S., i Nedović, G. (2016). Struktura motoričkog ponašanja i motoričkih programa osoba sa cerebralnom paralizom. Beogradska defektološka škola, 22(2), 21-40.

Potić, S., i Nedović, G. (2019). O senzornim informacijama i njihovom značaju za organizaciju motoričkog ponašanja – teorijska razmatranja. Beogradska defektološka škola, 25(3), 49-63.

Ravi, D. K., Kumar, N., & Singhi, P. (2017). Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: An updated evidence-based systematic review. Physiotherapy, 103(3), 245-258. https://doi.org/10.1016/j.physio.2016.08.004

Riches, S., Elghany, S., Garety, P., Rus-Calafell, M., & Valmaggia, L. (2019). Factors affecting sense of presence in a virtual reality social environment: A qualitative study. Cyberpsychology, Behavior, and Social Networking, 22(4), 288-292. https://doi.org/10.1089/cyber.2018.0128

Rosenbaum, P., Panenth, N., Leviton, A., Goldstein, M., Bax, M., & Damiano, D. (2006). A report: The definition and classification of cerebral palsy. Developmental Medicine & Child Neurology, 109, 8-14.

Şahin, S., Köse, B., Aran, O. T., Bahadlr Aǧce, Z., & Kayıhan, H. (2020). The effects of virtual reality on motor functions and daily life activities in unilateral spastic cerebral palsy: A single-blind randomized controlled trial. Games for Health Journal, 9(1), 45-52. https://doi.org/10.1089/g4h.2019.0020

Tieri, G., Morone, G., Paolucci, S., & Iosa, M. (2018). Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Review of Medical Devices, 15(2), 107-117. https://doi.org/10.1080/17434440.2018.1425613

Van Gelder, L., Booth, A. T. C., van de Port, I., Buizer, A. I., Harlaar, J., & van der Krogt, M. M. (2017). Real-time feedback to improve gait in children with cerebral palsy. Gait and Posture, 52, 76-82. https://doi.org/10.1016/j.gaitpost.2016.11.021

Weiss, P. L., Tirosh, E., & Fehlings, D. (2014). Role of virtual reality for cerebral palsy management. Journal of Child Neurology, 29(8), 1119-1124. https://doi.org/10.1177/0883073814533007

Yang, S., Chun, M. H., & Son, Y. R. (2014). Effect of virtual reality on cognitive dysfunction in patients with brain tumor. Annals of Rehabilitation Medicine, 38(6), 726-733. https://doi.org/10.5535/arm.2014.38.6.726

Yates, M., Kelemen, A., & Sik Lanyi, C. (2016). Virtual reality gaming in the rehabilitation of the upper extremities post-stroke. Brain Injury, 30(7), 855-863. https://doi.org/10.3109/02699052.2016.1144146

Zariffa, J., Kapadia, N., Kramer, J. L. K., Taylor, P., Alizadeh-Meghrazi, M., Zivanovic, V., Willms, R., Townson, A., Curt, A., Popovic, M. R., & Steeves, J. D. (2012). Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord, 50(3), 220-226. https://doi.org/10.1038/sc.2011.104

Objavljeno
2021/09/02
Rubrika
Pregledni članak