Implementation of virtual reality based treatment of motor disorders in children with cerebral palsy

  • Saša Stanisavljević University of Belgrade – Faculty of Special Education and Rehabilitation, Belgrade, Serbia
  • Goran Nedović University of Belgrade – Faculty of Special Education and Rehabilitation, Belgrade, Serbia https://orcid.org/0000-0002-5195-2963
Keywords: virtual reality, motor skills, rehabilitation, cerebral palsy

Abstract


Introduction. Virtual reality is a computer-generated interactive simulation of reality that provides a wide range of possibilities for creating a beneficial therapeutic program. The use of virtual reality systems in the rehabilitation of motor disorders in children with cerebral palsy is relatively recent. Objective. Accordingly, the aim of this review is to establish the level of effectiveness of rehabilitation interventions based on virtual reality systems in the treatment of children with cerebral palsy, based on the available literature. Methods. The initial search identified 63 scientific papers (research reports). By applying the selection criteria, nine papers were selected that met the given criteria and thus entered the further process of analysis. During the analysis, special attention was paid to: the outcomes of therapeutic procedures (the achieved results); and the analysis of the selection criteria of virtual reality systems to be used in the rehabilitation and accessibility of these systems for commercial and clinical applications. Results. Contradictory results have been found based on the analysis of the levels of effectiveness of rehabilitation interventions. In addition to studies that testify to the unequivocally positive effects of the application of virtual reality in the rehabilitation of children with cerebral palsy, there are also those in which it is evident that this effect is absent. Conclusion. The general conclusion of this paper is that virtual reality systems have great potential for application in the field of rehabilitation of motor disorders, but also that this area is still not sufficiently researched and requires further engagement to go one step further to justify or challenge their application.

References

Adomavičienė, A., Daunoravičienė, K., Kubilius, R., Varžaitytė, L., & Raistenskis, J. (2019). Influence of new technologies on post-stroke rehabilitation: A comparison of Armeo Spring to the Kinect system. Medicina, 55(4), Article 98. https://doi.org/10.3390/medicina55040098

Aida, J., Chau, B., & Dunn, J. (2018). Immersive virtual reality in traumatic brain injury rehabilitation: A literature review. NeuroRehabilitation, 42(4), 441-448. https://doi.org/10.3233/NRE-172361

Amirmudin, N. A., Lavelle, G., Theologis, T., Thompson, N., & Ryan, J. M. (2019). Multilevel surgery for children with cerebral palsy: A meta-analysis. Pediatrics, 143(4), Article e20183390. https://doi.org/10.1542/peds.2018-3390

Arnoni, J. L. B., Pavão, S. L., dos Santos Silva, F. P., & Rocha, N. A. C. F. (2019). Effects of virtual reality in body oscillation and motor performance of children with cerebral palsy: A preliminary randomized controlled clinical trial. Complementary Therapies in Clinical Practice, 35, 189-194. https://doi.org/10.1016/j.ctcp.2019.02.014

Ayed, I., Ghazel, A., Jaume-i-Capó, A., Moyà-Alcover, G., Varona, J., & Martínez-Bueso, P. (2019). Vision-based serious games and virtual reality systems for motor rehabilitation: A review geared toward a research methodology. International Journal of Medical Informatics, 131, Article 103909. https://doi.org/10.1016/j.ijmedinf.2019.06.016

Beretta, E., Cesareo, A., Biffi, E., Schafer, C., Galbiati, S., & Strazzer, S. (2018). Rehabilitation of upper limb in children with acquired brain injury: A preliminary comparative study. Journal of Healthcare Engineering, 2018, Article 4208492. https://doi.org/10.1155/2018/4208492

Bonnechère, B., Jansen, B., Omelina, L., & Van Sint Jan, S. (2016). The use of commercial video games in rehabilitation: A systematic review. International Journal of Rehabilitation Research, 39(4), 277-290. https://doi.org/10.1097/MRR.0000000000000190

Booth, A. T., Buizer, A. I., Harlaar, J., Steenbrink, F., & van der Krogt, M. M. (2019). Immediate effects of immersive biofeedback on gait in children with cerebral palsy. Archives of Physical Medicine and Rehabilitation, 100(4), 598-605. https://doi.org/10.1016/j.apmr.2018.10.013

Brütsch, K., Koenig, A., Zimmerli, L., Mérillat-Koeneke, S., Riener, R., Jäncke, L., Van Hedel, H. J. A., & Meyer-Heim, A. (2011). Virtual reality for enhancement of robot-assisted gait training in children with neurological gait disorders. Journal of Rehabilitation Medicine, 43(6), 493-499. https://doi.org/10.2340/16501977-0802

Calabrò, R. S., Russo, M., Naro, A., Milardi, D., Balletta, T., Leo, A., Filoni, S., & Bramanti, P. (2016). Who may benefit from Armeo Power treatment? A neurophysiological approach to predict neurorehabilitation outcomes. PM and R, 8(10), 971-978. https://doi.org/10.1016/j.pmrj.2016.02.004

Cavalcante Neto, J. L., de Oliveira, C. C., Greco, A. L., Zamunér, A. R., Moreira, R. C., & Tudella, E. (2019). Is virtual reality effective in improving the motor performance of children with developmental coordination disorder? A systematic review. European Journal of Physical and Rehabilitation Medicine, 55(2), 291-300. https://doi.org/10.23736/S1973-9087.18.05427-8

Cho, C., Hwang, W., Hwang, S., & Chung, Y. (2016). Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. Tohoku Journal of Experimental Medicine, 238(3), 213-218. https://doi.org/10.1620/tjem.238.213

Christy, J. B., Chapman, C. G., & Murphy, P. (2012). The effect of intense physical therapy for children with cerebral palsy. Journal of Pediatric Rehabilitation Medicine, 5(3), 159-170. https://doi.org/10.3233/PRM-2012-0208

Clark, W. E., Sivan, M., & O’Connor, R. J. (2019). Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review. Journal of Rehabilitation and Assistive Technologies Engineering, 6, Article 205566831986355. https://doi.org/10.1177/2055668319863557

De Araújo, A. V. L., Neiva, J. F. D. O., Monteiro, C. B. D. M., & Magalhães, F. H. (2019). Efficacy of virtual reality rehabilitation after spinal cord injury: A systematic review. BioMed Research International, 2019, Article 7106951. https://doi.org/10.1155/2019/7106951

Dockx, K., Van den Bergh, V., Bekkers, E. M. J., Ginis, P., Rochester, L., Hausdorff, J. M., Mirelman, A., & Nieuwboer, A. (2013). Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database of Systematic Reviews, 2013(10), Article CD010760. https://doi.org/10.1002/14651858.CD010760

Donath, L., Rössler, R., & Faude, O. (2016). Effects of virtual reality training (exergaming) compared to alternative exercise training and passive control on standing balance and functional mobility in healthy community-dwelling seniors: A meta-analytical review. Sports Medicine, 46(9), 1293-1309. https://doi.org/10.1007/s40279-016-0485-1

El-Shamy, S. M. (2018). Efficacy of Armeo® robotic therapy versus conventional therapy on upper limb function in children with hemiplegic cerebral palsy. American Journal of Physical Medicine and Rehabilitation, 97(3), 164-169. https://doi.org/10.1097/PHM.0000000000000852

El-Shamy, S., & Alsharif, R. (2017). Effect of virtual reality versus conventional physiotherapy on upper extremity function in children with obstetric brachial plexus injury. Journal of Musculoskeletal Neuronal Interactions, 17(4), 319-326.

Franki, I., Desloovere, K., De Cat, J., Feys, H., Molenaers, G., Calders, P., Vanderstraeten, G., Himpens, E., & Van den Broeck, C. (2012). The evidence-base for basic physical therapy techniques tar geting lower limb function in children with cerebral palsy: A systematic review using the International Clasificati of Functioning, Disability and Health as a conceptual framework. Journal of Rehabilitation Medicine, 44(5), 385-395. https://doi.org/10.2340/16501977-0983

Gagliardi, C., Turconi, A. C., Biffi, E., Maghini, C., Marelli, A., Cesareo, A., Diella, E., & Panzeri, D. (2018). Immersive virtual reality to improve walking abilities in cerebral palsy: A pilot study. Annals of Biomedical Engineering, 46(9), 1376-1384. https://doi.org/10.1007/s10439-018-2039-1

Glegg, S. M. N., Tatla, S. K., & Holsti, L. (2014). The GestureTek virtual reality system in rehabilitation: A scoping review. Disability and Rehabilitation: Assistive Technology, 9(2), 89-111. https://doi.org/10.3109/17483107.2013.799236

Golomb, M. R., Warden, S. J., Fess, E., Rabin, B., Yonkman, J., Shirley, B., & Burdea, G. C. (2011). Maintained hand function and forearm bone health 14 months after an in-home virtual-reality videogame hand telerehabilitation intervention in an adolescent with hemiplegic cerebral palsy. Journal of Child Neurology, 26(3), 389-393. https://doi.org/10.1177/0883073810394847

Gómez Álvarez, N., Venegas Mortecinos, A., Zapata Rodríguez, V., López Fontanilla, M., Maudier Vásquez, M., Pavez-Adasme, G., & Hernández-Mosqueira, C. (2018). Effect of an intervention based on virtual reality on motor development and postural control in children with Down syndrome. Revista Chilena de Pediatria, 89(6), 747-752. https://doi.org/10.4067/S0370-41062018005001202

Gorini, A., Capideville, C. S., De Leo, G., Mantovani, F., & Riva, G. (2011). The role of immersion and narrative in mediated presence: The virtual hospital experience. Cyberpsychology, Behavior and Social Networking, 14(3), 99-105. https://doi.org/10.1089/cyber.2010.0100

Harris, K., & Reid, D. (2005). The influence of virtual reality play on children’s motivation. Canadian Journal of Occupational Therapy, 72(1), 21-29. https://doi.org/10.1177/000841740507200107

Jung, S. H., Song, S. H., Kim, S. D., Lee, K., & Lee, G. C. (2018). Does virtual reality training using the Xbox Kinect have a positive effect on physical functioning in children with spastic cerebral palsy? A case series. Journal of Pediatric Rehabilitation Medicine, 11(2), 95-101. https://doi.org/10.3233/PRM-160415

Kassee, C., Hunt, C., Holmes, M. W. R., & Lloyd, M. (2017). Home-based Nintendo Wii training to improve upper-limb function in children ages 7 to 12 with spastic hemiplegic cerebral palsy. Journal of Pediatric Rehabilitation Medicine, 10(2), 145-154. https://doi.org/10.3233/PRM-170439

Kerem, M., Kaya, O., Ozal, C., & Turker, D. (2014). Virtual reality in rehabilitation of children with cerebral palsy. In E. Švraka (Ed.), Cerebral Palsy – Challenges for the Future (pp. 273-301). InTech. http://dx.doi.org/10.5772/57486

Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, 2017(11), Article CD008349. https://doi.org//10.1002/14651858.CD008349.pub4

Lee, K. H. (2015). Effects of a virtual reality-based exercise program on functional recovery in stroke patients: Part 1. Journal of Physical Therapy Science, 27(6), 1637-1640. https://doi.org/10.1589/jpts.27.1637

Levac, D., Glegg, S. M. N., Sveistrup, H., Colquhoun, H., Miller, P. A., Finestone, H., DePaul, V., Harris, J. E., & Velikonja, D. (2016). A knowledge translation intervention to enhance clinical application of a virtual reality system in stroke rehabilitation. BMC Health Services Research, 16(1), Article 557. https://doi.org/10.1186/s12913-016-1807-6

Levac, D., McCormick, A., Levin, M. F., Brien, M., Mills, R., Miller, E., & Sveistrup, H. (2018). Active video gaming for children with cerebral palsy: Does a clinic-based virtual reality component offer an additive benefit? A pilot study. Physical and Occupational Therapy in Pediatrics, 38(1), 74-87. https://doi.org/10.1080/01942638.2017.1287810

Levinger, P., Zeina, D., Teshome, A. K., Skinner, E., Begg, R., & Abbott, J. H. (2016). A real time biofeedback using Kinect and Wii to improve gait for post-total knee replacement rehabilitation: A case study report. Disability and Rehabilitation: Assistive Technology, 11(3), 251-262. https://doi.org/10.3109/17483107.2015.1080767

Lotan, M., Yalon-Chamovitz, S., & Weiss, P. L. T. (2010). Virtual reality as means to improve physical fitness of individuals at a severe level of intellectual and developmental disability. Research in Developmental Disabilities, 31(4), 869-874. https://doi.org/10.1016/j.ridd.2010.01.010

Maggio, M. G., Russo, M., Cuzzola, M. F., Destro, M., La Rosa, G., Molonia, F., Bramanti, P., Lombardo, G., De Luca, R., & Calabrò, R. S. (2019). Virtual reality in multiple sclerosis rehabilitation: A review on cognitive and motor outcomes. Journal of Clinical Neuroscience, 65, 106-111. https://doi.org/10.1016/j.jocn.2019.03.017

Mao, Y., Chen, P., Li, L., & Huang, D. (2014). Virtual reality training improves balance function. Neural Regeneration Research, 9(17), 1628-1634. https://doi.org/10.4103/1673-5374.141795

Massetti, T., da Silva, T. D., Crocetta, T. B., Guarnieri, R., de Freitas, B. L., Bianchi Lopes, P., Watson, S., Tonks, J., & de Mello Monteiro, C. B. (2018). The clinical utility of virtual reality in neurorehabilitation: A systematic review. Journal of Central Nervous System Disease, 10, 1-18. https://doi.org/10.1177/1179573518813541

McCoy, S. W., Palisano, R., Avery, L., Jeffries, L., Laforme Fiss, A., Chiarello, L., & Hanna, S. (2020). Physical, occupational, and speech therapy for children with cerebral palsy. Developmental Medicine and Child Neurology, 62(1), 140-146. https://doi.org/10.1111/dmcn.14325

Meyer-Heim, A., & van Hedel, H. J. A. (2013). Robot-assisted and computer-enhanced therapies for children with cerebral palsy: Current state and clinical implementation. Seminars in Pediatric Neurology, 20(2), 139-145. https://doi.org/10.1016/j.spen.2013.06.006

Meyns, P., Pans, L., Plasmans, K., Heyrman, L., Desloovere, K., & Molenaers, G. (2017). The effect of additional virtual reality training on balance in children with cerebral palsy after lower limb surgery: A feasibility study. Games for Health Journal, 6(1), 39-48. https://doi.org/10.1089/g4h.2016.0069

Mills, R., Levac, D., & Sveistrup, H. (2019). The effects of a 5-day virtual-reality based exercise program on kinematics and postural muscle activity in youth with cerebral palsy. Physical and Occupational Therapy in Pediatrics, 39(4), 388-403. https://doi.org/10.1080/01942638.2018.1505801

Mubin, O., Alnajjar, F., Jishtu, N., Alsinglawi, B., & Al Mahmud, A. (2019). Exoskeletons with virtual reality, augmented reality, and gamification for stroke patients’ rehabilitation: Systematic review. JMIR Rehabilitation and Assistive Technologies, 6(2), Article e12010. https://doi.org/10.2196/12010

Nicolini-Panisson, R. D. A., Tedesco, A. P., Folle, M. R., & Donadio, M. V. F. (2018). Selective dorsal rhizotomy in cerebral palsy: Selection criteria and postoperative physical therapy protocols. Revista Paulista de Pediatria, 36(1), 100-108. https://doi.org/10.1590/1984-0462/;2018;36;1;00005

Osumi, M., Inomata, K., Inoue, Y., Otake, Y., Morioka, S., & Sumitani, M. (2019). Characteristics of phantom limb pain alleviated with virtual reality rehabilitation. Pain Medicine, 20(5), 1038-1046. https://doi.org/10.1093/pm/pny269

Perez-Marcos, D., Solazzi, M., Steptoe, W., Oyekoya, O., Frisoli, A., Weyrich, T., Steed, A., Tecchia, F., Slater, M., & Sanchez-Vives, M. V. (2012). A fully immersive set-up for remote interaction and neurorehabilitation based on virtual body ownership. Frontiers in Neurology, 3, Article 110. https://doi.org/10.3389/fneur.2012.00110

Potić, S., i Nedović, G. (2016). Struktura motoričkog ponašanja i motoričkih programa osoba sa cerebralnom paralizom. Beogradska defektološka škola, 22(2), 21-40.

Potić, S., i Nedović, G. (2019). O senzornim informacijama i njihovom značaju za organizaciju motoričkog ponašanja – teorijska razmatranja. Beogradska defektološka škola, 25(3), 49-63.

Ravi, D. K., Kumar, N., & Singhi, P. (2017). Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: An updated evidence-based systematic review. Physiotherapy, 103(3), 245-258. https://doi.org/10.1016/j.physio.2016.08.004

Riches, S., Elghany, S., Garety, P., Rus-Calafell, M., & Valmaggia, L. (2019). Factors affecting sense of presence in a virtual reality social environment: A qualitative study. Cyberpsychology, Behavior, and Social Networking, 22(4), 288-292. https://doi.org/10.1089/cyber.2018.0128

Rosenbaum, P., Panenth, N., Leviton, A., Goldstein, M., Bax, M., & Damiano, D. (2006). A report: The definition and classification of cerebral palsy. Developmental Medicine & Child Neurology, 109, 8-14.

Şahin, S., Köse, B., Aran, O. T., Bahadlr Aǧce, Z., & Kayıhan, H. (2020). The effects of virtual reality on motor functions and daily life activities in unilateral spastic cerebral palsy: A single-blind randomized controlled trial. Games for Health Journal, 9(1), 45-52. https://doi.org/10.1089/g4h.2019.0020

Tieri, G., Morone, G., Paolucci, S., & Iosa, M. (2018). Virtual reality in cognitive and motor rehabilitation: Facts, fiction and fallacies. Expert Review of Medical Devices, 15(2), 107-117. https://doi.org/10.1080/17434440.2018.1425613

Van Gelder, L., Booth, A. T. C., van de Port, I., Buizer, A. I., Harlaar, J., & van der Krogt, M. M. (2017). Real-time feedback to improve gait in children with cerebral palsy. Gait and Posture, 52, 76-82. https://doi.org/10.1016/j.gaitpost.2016.11.021

Weiss, P. L., Tirosh, E., & Fehlings, D. (2014). Role of virtual reality for cerebral palsy management. Journal of Child Neurology, 29(8), 1119-1124. https://doi.org/10.1177/0883073814533007

Yang, S., Chun, M. H., & Son, Y. R. (2014). Effect of virtual reality on cognitive dysfunction in patients with brain tumor. Annals of Rehabilitation Medicine, 38(6), 726-733. https://doi.org/10.5535/arm.2014.38.6.726

Yates, M., Kelemen, A., & Sik Lanyi, C. (2016). Virtual reality gaming in the rehabilitation of the upper extremities post-stroke. Brain Injury, 30(7), 855-863. https://doi.org/10.3109/02699052.2016.1144146

Zariffa, J., Kapadia, N., Kramer, J. L. K., Taylor, P., Alizadeh-Meghrazi, M., Zivanovic, V., Willms, R., Townson, A., Curt, A., Popovic, M. R., & Steeves, J. D. (2012). Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord, 50(3), 220-226. https://doi.org/10.1038/sc.2011.104

Published
2021/09/02
Section
Review Paper