Analiza performansi objektivnih mera procene kvaliteta slika i videa sa potpunim referenciranjem

  • Boban P. Bondžulić Univerzitet odbrane u Beogradu, Vojna akademija, Katedra telekomunikacija i informatike
  • Boban Z. Pavlović Univerzitet odbrane u Beogradu, Vojna akademija, Katedra telekomunikacija i informatike
  • Vladimir S. Petrović Univerzitet u Novom Sadu, Fakultet tehničkih nauka
Ključne reči: JPEG compression||, ||JPEG kompresija, H.264 and H.265 video compression||, ||H.264 i H.265 video kompresije, objective image and video quality assessment||, ||objektivna procena kvaliteta slike i videa,

Sažetak


U radu su predstavljene performanse objektivnih mera procene kvaliteta slika i videa na dve javno dostupne baze sa subjektivnim impresijama kvaliteta. Pored analize performansi na globalnom planu – nivou kompletnih baza, u radu su analizirane i performanse mera na podskupovima signala unutar njih. Baza slika sadrži pet podskupova nastalih primenom različitih tipova JPEG kompresije, dok baza video- sekvenci sadrži šest podskupova – četiri nastala kompresijom izvornih sekvenci i dva podskupa sa degradacijama karakterističnim za prenos video-signala. Za određivanje uspešnosti objektivnih mera, tj. poređenje subjektivnih i objektivnih skorova kvaliteta, korišćene su mere koje je prihvatio ITU (koeficijent korelacije, korelacija rangova, srednja apsolutna greška, srednja kvadratna greška i standardna devijacija procena). Pokazano je da objektivne mere na podskupovima signala iz baza mogu dostići visok stepen slaganja sa rezultatima subjektivnih testova. Performanse objektivnih mera zavise od tipa degradacije, što znatno utiče na performanse na nivou kompletne baze. Razlika u performansama je izraženija na bazi video-sekvenci zbog znatnih vizuelnih razlika u sekvencama nastalim kompresijom, paketskim gubicima i dodavanjem Gausovog šuma. Zbog toga se može reći da univerzalna objektivna mera, tj. mera koja će biti upotrebljiva kod različitih tipova degradacije signala, za različite stepene degradacije, za različite primene i sl., trenutno ne postoji.

Reference

Bondzulic, B., & Petrovic, V. 2011. Edge-based objective evaluation of image quality. In: IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, pp.3305-3308. September 11-14. Available at: http://dx.doi.org/10.1109/ICIP.2011.6116378.

Bondžulić, B. 2016. Procena kvaliteta slike i videa kroz očuvanje informacija o gradijentu. Novi Sad: University in Novi Sad. Ph.D. thesis (in Serbian).

Bovik, A.C. 2010. Perceptual video processing: Seeing the future. Proceedings of the IEEE, 98(11), pp.1799-1803. Available at: http://dx.doi.org/10.1109/JPROC.2010.2068371.

Bovik, A.C. 2013. Automatic prediction of perceptual image and video quality. Proceedings of the IEEE, 101(9), pp.2008-2024. Available at: http://dx.doi.org/10.1109/JPROC.2013.2257632.

Chandler, D.M., & Hemami, S.S. 2007. VSNR: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 16(9), pp.2284-2298. pmid:17784602. Available at: http://dx.doi.org/10.1109/TIP.2007.901820.

De Simone, F., Goldmann, L., Baroncini, V., & Ebrahimi, T. 2009. Subjective evaluation of JPEG XR image compression. In: Proc. of SPIE, 7443, San Diego, CA, pp.1-12 74430L. August 02. Available at: http://dx.doi.org/10.1117/12.830714.

-International Telecommunication Union. 2004. ITU TUTORIAL: Objective perceptual assessment of video quality: Full reference television. Geneva, Switzerland.

-International Telecommunication Union. 2008. ITU-T Recommendation P.910: Subjective video quality assessment methods for multimedia applications. Geneva, Switzerland.

-International Telecommunication Union. 2012. ITU-R Recommendation BT.500-13: Methodology for the subjective assessment of the quality of television pictures. Geneva, Switzerland.

-International Telecommunication Union. 2016. ITU-T Recommendation P.913: Methods for the subjective assessment of video quality, audio quality and audiovisual quality of Internet video and distribution quality television in any environment. Geneva, Switzerland.

Larson, E.C., & Chandler, D.M. 2010. Most apparent distortion: Full reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 19(1), pp.1-21, 011006. Available at: http://dx.doi.org/10.1117/1.3267105.

Narwaria, M., Lin, W., & Liu, A. 2012. Low-complexity video quality assessment using temporal quality variations. IEEE Transactions on Multimedia, 14(3), pp.525-535. Available at: http://dx.doi.org/10.1109/TMM.2012.2190589.

Pinson, M.H., & Wolf, S. 2004. A new standardized method for objectively measuring video quality. IEEE Transactions on Broadcasting, 50(3), pp.312-322. Available at: http://dx.doi.org/10.1109/TBC.2004.834028.

Seshadrinathan, K., & Bovik, A.C. 2010. Motion tuned spatio-temporal quality assessment of natural videos. IEEE Transactions on Image Processing, 19(2), pp.335-350, pmid:19846374. Available at: http://dx.doi.org/10.1109/TIP.2009.2034992.

Sheikh, H.R., & Bovik, A.C. 2006. Image information and visual quality. IEEE Transactions on Image Processing, 15(2), pp.430-444, pmid:16479813. Available at: http://dx.doi.org/10.1109/TIP.2005.859378.

Vu, P.V., & Chandler, D.M. 2014. ViS3: An algorithm for video quality assessment via analysis of spatial and spatiotemporal slices. Journal of Electronic Imaging, 23(1), pp.1-24, 01316. Available at: http://dx.doi.org/10.1117/1.JEI.23.1.0130.

Wang, Z., & Bovik, A.C. 2002. A universal image quality index. IEEE Signal Processing Letters, 9(3), pp.81-84. Available at: http://dx.doi.org/10.1109/97.995823.

Wang, Z., & Bovik, A.C. 2011. Reduced- and no-reference image quality assessment. IEEE Signal Processing Magazine, 28(6), pp.29-40. Available at: http://dx.doi.org/10.1109/MSP.2011.942471.

Wang, Z., Bovik, A.C., & Lu, L. 2002. Why is image quality assessment so difficult? In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Orlando, FL, pp.3313-3316. May 13-17. Available at: http://dx.doi.org/10.1109/ICASSP.2002.5745362.

Wang, Z., Bovik, A.C., Sheikh, H.R., & Simoncelli, E.P. 2004. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), pp.600-612, pmid:15376593. Available at: http://dx.doi.org/10.1109/TIP.2003.819861.

Wang, Z., Simoncelli, E.P., & Bovik, A.C. 2003. Multi-scale structural similarity for image quality assessment. In: Conference Record of the 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, pp.1398-1402. November 9-12. Available at: http://dx.doi.org/10.1109/ACSSC.2003.1292216.

Objavljeno
2018/03/16
Rubrika
Originalni naučni radovi