Neke kritičke napomene o radu „Beleška o metrizabilnosti tvp-konusnih metričkih prostora”

  • Suzana M. Aleksić Univerzitet u Kragujevcu, Prirodno-matematički fakultet
  • Ljiljana R. Paunović University of Priština - Kosovska Mitrovica, Faculty of Education in Prizren - Leposavić, Leposavić
  • Stojan N. Radenović University of Belgrade, Faculty of Mechanical Engineering, Belgrade
  • Francesca Vetro University of Palermo, Department of Energy, Information Engineering and Mathematical Models (DEIM), Palermo
Ključne reči: tvs-cone metric space||, ||tvp-konusni metrički prostor, metrizable||, ||metrizabilan, solid||, ||konus sa nepraznom unutrašnjošću, normal||, ||normalan, non-normal||, ||nije normalan,

Sažetak


Ova kratka i pregledna beleška daje detaljan izveštaj o pristupu i rezultatima do kojih su došli Šou Lin i grupa autora (Lin et al, 2015, pp.271-279). U članku je pokazano da njihovi rezultati nisu naročito iznenađujući i novi. U stvari, korišćenjem jednog poznatog K. Demlingovog rezultata naznačeno je da su tvp-konusni metrički prostori sa konusima koji imaju nepraznu unutrašnjost zapravo konusni metrički prostori sa normalnim konusima i nepraznim unutrašnjostima. Stoga, postoje samo konusni metrički prostori sa normalnim konusima čija unutrašnjost nije prazna ili sa konusima koji su normalni, ali sa praznim unutrašnjostima. Još uvek se ne zna da li postoji uređen topološki vektorski prostor sa konusom koji nije normalan i čija unutrašnjost nije prazna.

Reference

Alnafei, S.H., Radenović, S., & Shahzad, N., 2011. Fixed point theorems for mappings with convex diminishing diameters on cone metric spaces. Appl. Math. Lett., 24 (2), pp.2162-2166. Available at: https://doi.org/10.1016/j.aml.2011.06.019.

Amini-Harandi, A., & Fakhar, M., 2010. Fixed point theory in cone metric spaces obtained via the scalarization method. Comput. Math. Appl., 59 (11), pp.3529-3534. Available at: https://doi.org/10.1016/j.camwa.2010.03.046.

Ansari, A.H., Chandok, S., Hussain, N., & Paunović, L., 2016. Fixed point of weak contractions in regular cone. Journal of Advanced Mathematical Studies, 9 (1), pp.72-82.

Deimling, K., 1985. Nonlinear Functional Analysis.Springer- Verlag.

Du, W.S., 2010. A note on cone metric fixed point theory and its equivalence. Nonlinear Anal., 72 (5), pp.2259-2261. Available at: https://doi.org/10.1016/j.na.2009.10.026.

Đorđević, M., Đorić, D., Kadelburg, Z., Radenović, S., & Spasić, D., 2011. Fixed point results under C-distance in TVS- cone metric spaces. Fixed Point Theory and Applications, 2011:29. Available at: https://doi.org/10.1186/1687-1812-2011-29.

Filipović, M., Paunović, Radenović, S., & Rajović, M., 2011. Remarks on ˝Cone Metric Spaces and Fixed Point Theorems of T-Kannan Contractive Mappings˝. Mathematical and Computer Modelling, 54 (5-6). Available at: https://doi.org/10.1016/j.mcm.2011.04.018.

Huang, L.G., & Zhang, X., 2007. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl., 332 (2), pp.1468-1476. Available at: https://doi.org/10.1016/j.jmaa.2005.03.087.

Jachymski, J., & Klima, J., 2016. Cantor's intersection theorem for K-metric spaces with a solid cone and a contraction principle. J. Fixed Point Theory Appl., 18 (3), pp.445-463. Available at: https://doi.org/10.1007/s11784-016-0312-1.

Janković, S., Kadelburg, Z., & Radenović, S., 2011. On cone metric spaces: A survey. Nonlinear Anal., 74 (7), pp.2591-2601. Available at: https://doi.org/10.1016/j.na.2010.12.014.

Kadelburg, Z., Paunović, L., Radenović, S., & Rad, G.S., 2016. Non-normal cone metric and cone b-metric spaces and fixed point results. Scientific publications of the state University of Novi Pazar, Ser. A: Appl. Math. Inform. And Mech., 8 (2), pp.177-186. Available at: https://doi.org/10.5937/SPSUNP1602177K.

Kadelburg, Z., Radenović, S., & Rakočević, V., 2011. A note on the equivalence of some metric and cone metric fixed point results. Appl. Math. Lett., 24 (3), pp.370-374. Available at: https://doi.org/10.1016/j.aml.2010.10.030.

Khani, M., & Pourmahdian, M., 2011. On the metrizability of cone metric space. Topology Appl., 158 (2), pp.190-193. Available at: https://doi.org/10.1016/j.topol.2010.10.016.

Köthe, G., 1969. Topological Vector Spaces I.New York: Springer-Verlag, Inc..

Lin, S., Li, K., & Ge, Y., 2015. On the metrizability of tvs-cone metric spaces, Publication de l'Institut Mathématique. Nouvelle série, tome, 98 (112), pp.271-279. Available at: https://doi.org/10.2298/PIM1512271L.

Radenović, S., Vetro, F., & Xu, S., 2017. Some new results on perov type mappings. J. Adv. Math. Stud., 10(3), pp.396-409.

Shaefer, H.H., 1971. Topological Vector Spaces, 3rd ed.New York: Springer.

Simić, S., 2011. A note on Stone's, Baire's, Ky Fan's and Dugundji's theorem in tvs-cone metric spaces. Appl. Math. Lett., 24 (6), pp.999-1002. Available at: https://doi.org/10.1016/j.aml.2011.01.014.

Vandergraft, J.S., 1967. Newton's method for convex operators in partially ordered spaces. SIAM J. Num. Anal., 4 (3), pp.406-432. Available at: https://doi.org/10.1137/0704037.

Wong, Y.C., & Ng, K.F., 1973. Partially Ordered Topological Vector Spaces.Oxford: Claredon Press.

Xu, S., & Radenović, S., 2014. Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality. Fixed Point Theory Appl., 2014:102. Available at: https://doi.org/10.1186/1687-1812-2014-102.

Xu, S., Dolićanin, Ć., & Radenović, S., 2016. Some remarks on results of Perov type. J. Adv. Math. Stud., 9 (3), pp.361-369.

Zabrejko, P.P., 1997. K-metric and K-normed linear spaces, survey. Collect. Math., 48, pp.825-859.

Objavljeno
2017/12/21
Rubrika
Originalni naučni radovi