Brzine čestica praha u plazmi na niskom pritisku

  • Mihailo R. Mrdak IMTEL komunikacije a.d.
Ključne reči: VPS||, ||VPS, plasma arc power||, ||snaga plazma-luka, velocity of powder particles||, ||brzina čestica praha,

Sažetak


Nizak pritisak inertnog gasa u vakuum-komori znatno utiče na prenos brzine čestica plazme na čestice praha, vreme boravka čestica praha u plazmi i kinetičku energiju istopljenih čestica pre sudara sa podlogom. Na srednju brzinu čestica praha, pored niskog pritiska inertnog gasa u vakuum-komori, najveći uticaj ima veličina i masena gustina čestica praha i snaga plazma-luka. Za merenje brzine čestica praha u vakuumu na niskom pritisku komore primenjuje se laserski merač brzine. Srednja brzina čestica istopljenog praha V = s/t proračunava se kada se dužina puta čestica praha koje prođu između dva žižna odstojanja laserskog zraka podele sa vremenom prolaza čestica između dve žiže. Merenja se obavljaju za pritisak u vakuum-komori koji je najčešće od 6,7 do 80 kPa. U radu je prikazana veza između srednje brzine čestica praha Al2O3 i W u zavisnosti od pritiska u vakuum-komori, raspodele granulata, masene gustine i snage plazma-luka. Ustanovljeno je da se za prah manje masene gustine može, uz smanjenje pritiska u komori, povećati prosečna brzina čestica za 200 m/s. Efekat pritiska na čestice veće masene gustine W je manji, mada je bitan, jer se sa smanjenjem pritiska uvećava srednja brzina čestica do 50%. Smanjenje snage plazma-luka smanjuje maksimalne brzine čestica za oba praha.

Biografija autora

Mihailo R. Mrdak, IMTEL komunikacije a.d.
doktor tehničkih nauka

Reference

Aebli, N., Krebs, J., Stich, H., Schawalder, P., Walton, M., Schwenke, D., Gruner, H., Gasser, B., & Theis, J. 2003. In vivo comparison of the osseointegration of vacuum plasma sprayed titanium- and hydroxyapatite-coated implants. Journal of Biomedical Materials Research, 66(2), pp.356-363. Available at: https://doi.org/10.1002/jbm.a.10508.

Ganvir, A., Curry, N., Govindarajan, S., & Markocsan, N. 2015. Characterization of Thermal Barrier Coatings Produced by Various Thermal Spray Techniques Using Solid Powder, Suspension, and Solution Precursor Feedstock Material. International Journal of Applied Ceramic Technology, 13(2), pp.324-332. Available at: https://doi.org/10.1111/ijac.12472.

Graziani, G., Bianchi, M., Sassoni, E., Russo, A., & Marcacci, M. 2017. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review. Materials Science and Engineering: C, 74(1), pp.219-229. Available at: https://doi.org/10.1016/j.msec.2016.12.018.

Hamatani, H., Crawford, W., & Cappelli, M. 2003. Optical measurements of plasma velocity and temperature in a low-rate, low-power LPPS system. Surface and Coatings Technology, 162(1), pp.79-92. Available at: https://doi.org/10.1016/s0257-8972(02)00565-0.

Mauer, G., Vaßen, R., Zimmermann, S., Biermordt, T., Heinrich, M., Marques, J.-L., Landes, K., & Schein, J. 2013. Investigation and Comparison of In-Flight Particle Velocity During the Plasma-Spray Process as Measured by Laser Doppler Anemometry and DPV-2000. Journal of Thermal Spray Technology, 22(6), pp.892-900. Available at: https://doi.org/10.1007/s11666-013-9940-9.

Mrdak, M. 2018. Transfer of heat and speed of plasma particles to powder particles in the plasma spray process at atmospheric pressure. Vojnotehnički glasnik/Military Technical Courier, 66(2), pp.415-430. Available at: https://doi.org/10.5937/vojtehg66-12942.

Muehlberger, E. 1974. A High Energy Plasma Coating Process. In 7th International Metal Spraying Conference, The Welding Institute, Abington, Cambridge, U.K., pp.245-256.

Smith, F.M. 1988. Laser Measurement of Particle Velocities in Vacuum Plasma Spray Deposition. In 1st Plasma – Technik – Symposium, Swicerland, Lucerne, May 18-20, pp.77-85.

Smith, M.F., & Dykhuizen, R.C. 1988. Effect of chamber pressure on particle velocities in low pressure plasma spray deposition. Surface and Coatings Technology, 34(1), pp.25-31. Available at: https://doi.org/10.1016/0257-8972(88)90085-0.

Smith, M.F., Hall, A.C., Fleetwood, J.D., & Meyer, P. 2011. Very Low Pressure Plasma Spray: A Review of an Emerging Technology in the Thermal Spray Community. Coatings, 1(2), pp.117-132. Available at: https://doi.org/10.3390/coatings1020117.

Young, E.J., Mateeva, E., Moore, J.J., Mishra, B., & Loch, M. 2000. Low pressure plasma spray coatings. Thin Solid Films, 377-378, pp.788-792. Available at: https://doi.org/10.1016/s0040-6090(00)01452-8.

Zhang, N., Zhu, L., Planche, M.P., & Coddet, C. 2012. In-flight particle characterization and coating formation of yttria-stabilized zirconia under low pressure plasma spray condition. In Thermal Spray: Proceedings from the International Thermal Spray Conference and Exposition, USA, Texas, Houston, May 21–24, pp.724-728.

Objavljeno
2019/03/24
Rubrika
Originalni naučni radovi