Metodologija za procenu rizika: primena Bajesovih mreža verovatnoće u projektu delaboracije municije
Sažetak
Modeli koji reprezentuju realne probleme prilikom donošenja zaključaka većinom se oslanjaju na istorijske podatke. Negativan aspekt ovih modela jeste da oni ne mogu da predvide buduća stanja zasnovana na trenutno prikupljenim podacima kao i novim izvorima rizika. Da bi se prevazišao ovaj problem, u radu je prikazan proces izgradnje realnog prediktivnog modela korišćenjem Bajesovih mreža verovatnoće i softvera AgenaRisk. Bajesove mreže verovatnoće najdirektnije reprezentuju realne probleme preko grafičke strukture koja predstavlja uslovne veze, a ne samo tokove informacija. Razvijeni su i softveri koji imaju algoritme za računanje uslovnih verovatnoća. Kao teoretska osnova koristi se Bajesova teorema koja je takođe objašnjena u ovom radu. Druga prednost korišćenja Bajesovih mreža verovatnoće jeste proces zaključivanja koji se može vršiti u „oba pravca” (odozgo nadole i obratno), što ga čini veoma moćnim alatom u proceni rizika i procesu zaključivanja. Takođe, u radu su prikazani osnovni principi i prednosti primene Bajesovih mreža u procesu pripreme projekta delaboracije municije (rešavanje viškova i neperspektivne municije u skladištima). U njemu je procena rizika jedan od zahtevanih aktivnosti koji pomaže u procesu donošenja konačne odluke za pokretanje ili nepokretanje projekta. Analiza osetljivosti i SWOT analiza primenjeni su kao korisni alati za validaciju i donošenje konačnih zaključaka.
Reference
Andrejić, M., Đorović, B., & Pamučar, D. 2011. Managing project using a project management approach. Vojnotehnički glasnik/Military Technical Courier, 59(2), pp.142-175. Available at: https://doi.org/10.5937/vojtehg1102142A (in Serbian).
Constantinou, A.C., Fenton, N., Marsh, W., & Radlinski, L. 2016. From complex questionnaire and interviewing data to intelligent Bayesian network models for medical decision support. Artificial Intelligence in Medicine, 67, pp.75-93. Available at: https://doi.org/10.1016/j.artmed.2016.01.002.
Fan, C-F., & Yu, Y-C. 2004. BBN-based software project risk management. Journal of System and Software, 73(2), pp.193-203. Available at: https://doi.org/10.1016/j.jss.2003.12.032.
Fang, C., & Marle, F. 2012. A simulation-based risk network model for decision support in project risk management. Decision Support Systems, 52(3), pp.635–644. Available at: https://doi.org/10.1016/j.dss.2011.10.021.
Fenton, N., & Neil, M. 2011. The use of Bayes and causal modeling in decision makin, uncertainity and risk. [online] Available at: https://pdfs.semanticscholar.org/92dc/7cf5f483f5ebe9a0fffc5afe6e87bc5627e5.pdf. Accessed: 20.04.2018.
Fenton, N., & Neil, M. 2013. Risk Assessment and Decision Analysis with Bayesian Network. Boca Raton: CRC Press Taylor & Francis Group.
Gadeberg, M., & Luedeling, E. Can we build a better project: assessing complexities in development projects. [online] Available at: https://wle.cgiar.org/thrive/2016/06/01/can-we-build-better-project-assessing-complexities-development-projects. Accessed: 10.09.2016.
John, A., Yang, Z., Riahi, R., & Wang, J. 2016. A risk assessment approach to improve the resilience of a seaport system using Bayesian networks. Ocean Engineering, 111, pp.136–147. Available at: https://doi.org/10.1016/j.oceaneng.2015.10.048.
Landuyt, D., Broekx, S., D’hondt, R., Engelen, G., Aertsens, J., & Goethals, P.L.M. 2013. A review of Bayesian belief networks in ecosystem service modeling. Environmental Modelling & Software, 46, pp.1-11. Available at: https://doi.org/10.1016/j.envsoft.2013.03.011.
Lee, E., Park, Y., & Shin, J.G. 2009. Large engineering project risk management using a Bayesian belief network. Expert Systems with Applications, 36(3-Part2), pp.5880–5887. Available at: https://doi.org/10.1016/j.eswa.2008.07.057.
Malbašić, S., Tančić, L., & Petrović, V. 2016. Technology risk assessment as part of risk management process. Serbian Project Management Journal, 6(1), pp.51-62.
Marcelino-Sádaba, S., Pérez-Ezcurdia, A., Echeverría Lazcano, A.M., & Villanueva, P. 2014. Project risk management methodology for small firms. International Journal of Project Management, 32(2), pp.327-340. Available at: https://doi.org/10.1016/j.ijproman.2013.05.009.
Marcot, B.G., & Penman, T.D. 2019. Advances in Bayesian network modeling: Integration of modeling technologies. Environemntal Modeling & Software, 111, pp.386-393. Available at: https://doi.org/10.1016/j.envsoft.2018.09.016.
Raz, T., & Michael, E. 2001. Use and benefits of tools for project risk management. International Journal of Project Management, 19(1), pp.9-17. Available at: https://doi.org/10.1016/S0263-7863(99)00036-8.
Starr, C., & Shi, P. 2004. An Introduction to Bayesian Belief Networks and their Applications to Land Operations. [online] Available at: https://www.researchgate.net/publication/267240702_An_Introduction_to_Bayesian. Accessed: 15.09.2016.
Tang, A., Nicholson, A., & Jin, Y., & Han, J. 2007. Using Bayesian belief networks for change impact analysis in architecture design. Journal of Systems and Software, 80(1), pp.127-148. Available at: https://doi.org/10.1016/j.jss.2006.04.004.
Tien, I., & Der Kiureghian, A. 2016. Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems. Reliability Engineering & System Safety, 156, pp.134-147. Available at: https://doi.org/10.1016/j.ress.2016.07.022.
Weber, P., Medina-Oliva, G., Simon, C., & Iung, B. 2012. Overview on Bayesian networks application for dependability, risk analysis and maintenance. Engineering Applications of Artificial Intelligence, 25(4), pp.671–682. Available at: https://doi.org/10.1016/j.engappai.2010.06.002.
Wright, E. 2011. Risk Management in Public Contracting. USA National Institute of Governmental Purchasing (under LEAP program).
Yet, B., Constantinou, A., Fenton, N., Neil, M., Luedeling, E., & Shepherd, K. 2016. A Bayesian network framework for project cost, benefit and risk analysis with an agricultural development case study. Expert Systems with Applications, 60, pp.141-155. Available at: https://doi.org/10.1016/j.eswa.2016.05.005.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).