Određivanje kritičnog rastojanja u postupku eksplozivnog zavarivanja

Ključne reči: zavarivanje eksplozijom, kritično rastojanje, udarni talas, ruptura bubne opne, matrica rizika

Sažetak


Uvod/cilj: Pri izvođenju postupka eksplozivnog zavarivanja potrebno je voditi računa o minimalnom rastojanju između zaposlenih ili izvođača i mesta eksplozije u trenutku eksplozije. Nemarnost ili nehat može prouzrokovati privremeni gubitak sluha, pucanje bubne opne, a u nekim slučajevima čak i smrt. Cilj ovog rada je da se na osnovu mase eksplozivnog punjenja, koja je potrebna za eksplozivno zavarivanje, odredi kritično rastojanje pod uslovom da je u slučaju privremenog gubitka sluha granični pritisak 6,9 kPa, a u u slučaju pucanja bubne opne 35 kPa. U radu se ne uzimaju u obzir drugi efekti eksplozije osim oni prouzrokovani udarnim talasom.

Metode: U zavisnosti od tipa eksplozije, proračunata je ekvivalentna masa eksploziva. Na osnovu  nje i graničnog pritiska izračunata su minimalna rastojanja primenom jednačine Sadovskog i Kingerey-Bulmash-a.

Rezultati: U odgovarajućim tabelama prikazani su rezultati proračuna kritičnog rastojanja radnika od mesta eksplozije kada može doći do privremenog gubitka sluha, odnosno pucanja bubne opne. Kritična udaljenost od eksplozije izračunata metodom Kingerey-Bulmash, pod uslovom maksimalnog pritiska privremenog gubitka sluha, za 5,62% je manja od rastojanja dobijenog metodom Sadovskog, dok je kritična udaljenost od eksplozije izračunata metodom Kingerey-Bulmash-a, pod uslovom maksimalnog pritiska pucanja bubne opne, za 7,83% manja od rastojanja dobijenog metodom Sadovskog.

Zaključak: Rezultati proračuna su pokazali da se kritična udaljenost od eksplozije može uspešno proračunati i da dobijene vrednosti imaju male razlike u zavisnosti od primenjene metode za proračun.

Reference

Andreev, S.G., Babkin, A.V. & Baum, F.A. 2004. Fizika vzryva (Ed: Orlenko, L.P.). Moscow: Fizmatlit (in Russian). ISBN: 5-9221-0218-4. (In the original: Андреев, С.Г., Бабкин, А.В., Баум, Ф.А. 2004. Физика взрыва (ред: Орленко, Л.П.). Москва: Физматлит).

Bajić, Z., Bogdanov, J. & Jeremić, R. 2009. Blast Effects Evaluation Using TNT Equivalent. Scientific Technical Review, 59(3-4), pp.50-53 [online]. Available at: http://www.vti.mod.gov.rs/ntp/rad2009/34-09/7/7.pdf [Accessed: 18 February 2020].

Bataev, I., Tanaka, A.S., Zhou, Q., Lazurenko, D.V., Jorge Junior, A.M., Bataev, A.A., Hokamoto, K., Mori, A. & Chen, P. 2019. Towards better understanding of explosive welding by combination of numerical simulation and experimental study. Materials & Design, 169(art.number:107649). Available at: https://doi.org/10.1016/j.matdes.2019.107649.

Beveridge, A. 2011. Forensic Investigation of Explosions. Boca Raton, Florida: CRC Press. ISBN: 9781420087260.

-BlackBox Biometrics. 2018. The Blast gauge System. Pressure thresholds: what your medic needs to know [online]. Available at: http://quwdb2fvzocb4glqwropj20o-wpengine.netdna-ssl.com/wp-content/uploads/2018/10/White-Paper-Pressure-Thresholds-v4.pdf [Accessed: 18 February 2020].

Blazynski, T.Z. 1983. Explosive Welding Forming and Compaction. Dordrecht, NL: Springer. Online ISBN: 978-94-011-9751-9. Available at: https://doi.org/10.1007/978-94-011-9751-9.

Brode, H.L. 1955. Numerical solutions of spherical blast waves. Journal of Applied Physics, 26(6), pp.766–775. Available at: https://doi.org/10.1063/1.1722085.

Gan, R.Z., Nakmali, D.U., Ji, X.D., Leckness, K. & Yokell, Z. 2016. Mechanical damage of tympanic membrane in relation to impulse pressure waveform – A study in chinchillas. Hearing Research, 340, pp.25-34. Available at: https://doi.org/10.1016/j.heares.2016.01.004.

Ghomi, M.T. 2009. Impact wave process modeling and optimization in high energy rate explosive welding. Västerås, Sweden: Mälardalen University Press. Online ISBN: 978-91-86135-35-5 [online]. Available at: https://www.diva-portal.org/smash/get/diva2:232277/FULLTEXT03.pdf [Accessed: 21 January 2020].

Jeremić, R. 2002. Eksplozivni procesi. Belgrade: General Staff of the Yugoslav Army, Directorate for Education (in Serbian).

Kingery, C.N. & Bulmash, G. 1984. Technical report ARBRL-TR-02555: Air blast parameters from TNT spherical air burst and hemispherical burst, AD-B082 713. U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.

Kinney, G.F. & Graham, K.J. 1985. Explosive Shocks in Air. Berlin, Heidelberg: Springer-Verlag. Available at: https://doi.org/10.1007/978-3-642-86682-1.

-Manufacturing Guide. 2020. Explosion Welding [online]. Available at: https://www.manufacturingguide.com/en/explosion-welding [Accessed: 02 February 2020].

-NATO. 2010. Manual of NATO safety principles for the storage of military ammunition and explosives, AASTP-1, Change 3 [online]. Available at: http://www.rasrinitiative.org/pdfs/AASTP-1-Ed1-Chge-3-Public-Release-110810.pdf [Accessed: 18 February 2020].

Panowicz, R., Konarzewski, M. & Trypolin , M. 2017. Analysis of Criteria for Determining a TNT Equivalent. Strojniški vestnik - Journal of Mechanical Engineering, 63(11), pp.666-672. Available at: https://doi.org/10.5545/sv-jme.2016.4230.

Pejčinović, M. 2000. Analiza postupaka obrade eksplozijom. Graduate thesis. Kragujevac: University of Kragujevac, Faculty of Engineering (in Serbian).

Sadovsky, M.A. 1952. Mehanicheskoe dejstvie vozdushnyh udarnyh voln vzryva po dannym jeksperimental'nyh issledovanij. In: Sadovsky, M.A. & Beljaev, A.F. (Eds.) Fizika vzryva, Sbornik Nо. 1, pp.20-110. Moscow: USSR Academy of Sciences Publishing House [online]. Available at: http://elib.biblioatom.ru/text/fizika-vzryva_1_1952/go,20/ (in Russian) [Accessed: 2 February 2020]. (In the original: Садовский, М.А. 1952. Механическое действие воздушных ударных волн взрыва по данным экспериментальных исследований. В: Садовский, М.А. и Беляев, А.Ф. (Ред.) Физика взрыва, Сборник Но. 1, с.20-110. Москва: Издательство Академии наук СССР [онлайн]. Доступно на: http://elib.biblioatom.ru/text/fizika-vzryva_1_1952/go,20/ [Дата посещения: 2 февраля 2020 г]).

Shangyuan, J. 2018. Mechanical properties of human incudostapedial joint and tympanic membrane in normal and blast-damaged ears. Ph.D. thesis. Norman, OK: University of Oklahoma [online]. Available at: https://hdl.handle.net/11244/299908 [Accessed: 02 February 2020].

Solomos, G., Larcher, M., Valsamos, G., Karlos, V. & Casadei, F. 2020. A survey of computational models for blast induced human injuries for security and defence applications. Luxembourg: Publications Office of the European Union. Online ISBN: 978-92-76-14659-9. Available at: https://doi.org/10.2760/685.

Stamatović, A. 1995. Konstruisanje projektila. Belgrade: Ivexy (in Serbian).

Stewart, C. 2006. Blast Injuries: Preparing for the Inevitable. Emergency Medical Practic, 8(4) [online]. Available at: http://www.storysmith.net/page5/files/Blast%20Injuries%200406.pdf [Accessed: 21 January 2020].

-Trayal corporation. 2008. Technological procedure for making industrial powdered explosives. Serbian Patent number WO2008009031A1 [online]. Available at: https://patents.google.com/patent/WO2008009031A1/en [Accessed: 18 February 2020].

-Trayal corporation. 2020. Powder explosives [online]. Available at: https://trayal.rs/en/products/explosives/explosives-and-initiating-devices/explosives/explosive-cartridges/#599 [Accessed: 02 February 2020].

-United Nations. 2015. International Ammunition Technical Guideline - Formulae for ammunition management. IATG 01.80. Second ed. [online]. Available at: https://s3.amazonaws.com/unoda-web/wp-content/uploads/2019/05/IATG-01.80-Formulae-for-Ammunition-Management-V.2.01.pdf [Accessed: 18 February 2020].

Waldau, B., Huang, J.H., Winn, H.R. & Grant, G.A. 2015. Blast-Induced Neurotrauma, Chapter 337 [online]. Available at: https://clinicalgate.com/blast-induced-neurotrauma/ [Accessed: 18 February 2020].

Objavljeno
2020/07/25
Rubrika
Originalni naučni radovi