O nekim F-kontraktivnim preslikavanjima Piri-Kumam-Dungovog tipa u metričkim prostorima

Ključne reči: Banahov princip, F-kontraktivno preslikavanje, metrički prostor, nepokretna tačka

Sažetak


Uvod/cilj: U članku su uspostavljeni novi rezultati za preslikavanja Piri-Kumam-Dungovog tipa u kompletnom metričkom prostoru. Cilj rada jeste da se poboljšaju već objavljeni rezultati.

Metode: Koristeći svojstvo strogo rastuće funkcije, kao i poznatu lemu formulisanu u (Radenović et al, 2017), dokazano je da je Pikarov niz u stvari Košijev.

Rezultati:  Dobijeno je nekoliko novih rezultata posmatrajući F-kontraktivna preslikavanja od S u kompletnom metričkom prostoru. U dokazu je korišćena samo osobina (W1).

Zaključak: Autori veruju da dobijeni rezultati predstavljaju značajan doprinos dosadašnjim poznatim rezultatima.

Reference

Aljančić, S. 1969. Uvod u realnu i funkcionalnu analizu. Belgrade: Naučna knjiga (in Serbian).

Banach, S. 1922. Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae, 3, pp.133-181 (in French). Available at: https://doi.org/10.4064/fm-3-1-133-181.

Chen, C., Wen, L. & Gu, Y. 2016. Fixed point theorems for generalized F-contractions in b-metric-like spaces. Journal of Nonlinear Sciences and Applications, 9(5), pp.2161-2174. Available at: http://dx.doi.org/10.22436/jnsa.009.05.21.

Cosentino, M., Jleli, M., Samet, B. & Vetro, C. 2015. Solvability of integradifferential problems via fixed point theory in b-metric spaces. Fixed Point Theory and Application, art.num:70. Available at: https://doi.org/10.1186/s13663-015-0317-2.

Cosentino, M. & Vetro, P. 2014. Fixed point result for F-contractive mappings of Hardy-Rogers-Type. Filomat, 28(4), pp.715-722. Available at: https://doi.org/10.2298/FIL1404715C.

Ćirić, Lj. 2003. Some recent results in metrical fixed point theory. Belgrade: University of Belgrade.

Dey, L.K., Kumam, P. & Senapati, T. 2019. Fixed point results concerning α-F-contraction mappings in metric spaces. Applied General Topology, 20(1), pp.81-95. Available at: https://doi.org/10.4995/agt.2019.9949.

Dung, N.V. & Hang, V.T.L. 2015. A fixed point theorem for generalized F-contractions on complete metric space. Vietnam Journal of Mathematics, art.num:13, pp.743-753. Available at: https://doi.org/10.1007/s10013-015-0123-5.

Goswami, N., Haokip, N. & Mishra, V.N. 2019. F-contractive type mappings in b-metric spaces and some related fixed point results. Fixed Point Theory and Application, art.num:13. Available at: https://doi.org/10.1186/s13663-019-0663-6.

Kadelburg, Z. & Radenović, S. 2018. Notes on some recent papers concerning F-contractions in b-metric spaces. Constructive Mathematical Analysis, 1(2), pp.108-112. Available at: https://doi.org/10.33205/cma.468813.

Luambano, S., Kumar, S. & Kakiko, G. 2019. Fixed point theorem for F-contraction mappings in partial metric spaces. Lobachevskii Journal of Mathematics, 40(2), pp.183-188. Available at: https://doi.org/10.1134/S1995080219020094.

Lukacs, A. & Kajanto, S. 2018. Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory, 19(1), pp.321-334. Available at: https://doi.org/10.24193/fpt-ro.2018.1.25.

Miculescu, R.& Mihail, A. 2017. New fixed point theorems for set-valued contractions in b-metric spaces. Journal of Fixed Point Theory and Application, 19(3), pp.2153-2163. Available at: https://doi.org/10.1007/s11784-016-0400-2.

Minak, N., Helvaci, A. & Altun, I. 2014. Ćirić type generalizedF-contractions on complete metric spaces and fixed point results.Filomat, 28(6), pp.1143-1151. Available at:https://doi.org/10.2298/FIL1406143M.

Piri, H. & Kumam, P. 2014. Some fixed point theorems concerning contraction in complete metric spaces. Fixed Point Theory and Application, 210. Available at: https://doi.org/10.1186/1687-1812-2014-210.

Piri, H. & Kumam, P. 2016. Fixed point theorems for generalized F-Suzuki-contraction mappings in complete b-metric spaces. Fixed Point Theory and Application, art.num:90. Available at: https://doi.org/10.1186/s13663-016-0577-5.

Popescu, O. & Stan, G. 2020. Two fixed point theorems concerning F-contraction in complete metric spaces. Symmetry, 12(1), pp.1-10. Available at:https://doi.org/10.3390/sym12010058.

Radenović, S., Vetro, F. & Vujaković, J. 2017. An alternative and easy approach to fixed point results via simulation functions. Demonstratio Mathematica, 50(1), pp.223-230. Available at:https://doi.org/10.1515/dema-2017-0022.

Secelean, N.-A. 2013. Iterated function system consisting of F-contractions. Fixed Point Theory and Applications, art.num:277. Available at: https://doi.org/10.1186/1687-1812-2013-277.

Secelean, N.A. 2016. Weak F-contractions and some fixed point results. Bulletin of the Iranian Mathematical Society, 42(3), pp.779-798 [online]. Available at: http://bims.iranjournals.ir/article_812.html [Accessed: 01 July 2020].

Shukla, S., Radenović, S. & Kadelburg, Z. 2014. Some fixed point theorems for ordered F-generalized contractions in 0-f-orbitally complete partial metric spaces.Theory and Applications of Mathematical and Computer Science, 4(1), pp.87-98 [online]. Available at: https://uav.ro/applications/se/journal/index.php/TAMCS/article/view/95 [Accessed: 01 July 2020].

Wardowski, D. 2012. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Applications, art.num:94. Available at: https://doi.org/10.1186/1687-1812-2012-94.

Wardowski, D. 2018. Solving existence problems via F-contractions. Proceeding of American Mathematical Society, 146(4), pp.1585-1598. Available at: https://doi.org/10.1090/proc/13808.

Wardowski, D. & Van Dung, N. 2014. Fixed points of F-weak contractions on complete metric spaces. Demonstratio Mathematica, 47(1), pp.146-155. Available at: https://doi.org/10.2478/dema-2014-0012.

Objavljeno
2020/07/25
Rubrika
Originalni naučni radovi