Model za izbor rute za transport opasnog tereta primenom fuzzy logičkog sistema

Ključne reči: fuzzy logika, fuzzy skup, ATPP, FUCOM, opasne materije, Matlab

Sažetak


Uvod/cilj: Predstavljen je model za izbor rute za transport opasnog tereta primenom fuzzy logičkih sistema, kao vrste sistema veštačke inteligencije. Sistem predstavljen u radu pomaže organu saobraćajne službe pri izboru jedne od nekoliko mogućih ruta za transport opasnog tereta.

Metode: Procena rute vrši se na osnovu pet kriterijuma. Svaka ulazna promenljiva predstavljena je sa tri funkcije pripadnosti, a izlazna promenljiva definisana je sa pet tih funkcija. Sva pravila u fuzzy logičkom sistemu određuju se primenom metode agregacije težina premisa pravila (ATPP), koja omogućava formiranje baze pravila zasnovane na iskustvu i intuiciji. Na osnovu broja ulaznih promenljivih i broja njihovih funkcija pripadnosti definisana je osnovna baza od 243 pravila. Intervjuisana su tri eksperta iz Ministarstva odbrane kako bi se utvrdili ponderisani koeficijenti funkcija pripadnosti, a njihove vrednosti određene su metodom potpune konzistentnosti (FUCOM).

Rezultati: Za razvijeni fuzzy logički sistem stvoren je korisnički program koji omogućava praktičnu primenu ovog modela.

Zaključak: Korisnička platforma razvijena je u programskom paketu Matlab 2008b.

Reference

Badi, I., Shetwan, A. & Hemeda, A. 2019. A grey-based assessment model to evaluate health-care waste treatment alternatives in Libya. Operational Research in Engineering Sciences: Theory and Applications, 2(3), pp.92-106 [online]. Available at: https://oresta.rabek.org/index.php/oresta/article/view/40/31 [Accessed: 20 November 2020].

Barilla, D., Leonardi, G. & Puglisi, A. 2009. Risk assessment for hazardous materials transportation. Applied Mathematical Sciences, 3(46), pp.2295-2309 [online]. Available at: http://m-hikari.com/ams/ams-password-2009/ams-password45-48-2009/puglisiAMS45-48-2009-1.pdf [Accessed: 20 November 2020].

Biočanin, R., & Stefanov, S. 2011. Ecological safety of transport of hazardous materials. In: 38. nacionalna konferencija o kvalitetu, Kragujevac (Serbia), pp.A283-A288, May 19-21 [online]. Available at: http://www.cqm.rs/2011/FQ2011/pdf/38/45.pdf (in Serbian) [Accessed: 20 November 2020].

Božanić, D. & Pamučar, D. 2014. Izrada baze pravila fuzzy logičkog sistema za podršku u odlučivanju agregacijom težina premisa pravila. Tehnika, 69(1), pp.129-138 (in Serbian). Available at: https://doi.org/10.5937/tehnika1401129B.

Bozanic, D., Tešić, D. & Kočić, J. 2019. Multi-criteria FUCOM – Fuzzy MABAC model for the selection of location for construction of single-span bailey bridge. Decision Making: Applications in Management and Engineering, 2(1), pp.132-146 [online]. Available at: https://dmame.rabek.org/index.php/dmame/article/view/32 [Accessed: 20 November 2020].

Bozanic, D., Tešić, D. & Milić, A. 2020. Multicriteria decision making model with Z-numbers based on FUCOM and MABAC model. Decision Making: Applications in Management and Engineering, 3(2), pp.19-36 [online]. Available at: https://dmame.rabek.org/index.php/dmame/article/view/72 [Accessed: 20 November 2020].

Castillo, J.E.A. 2004. Rout Optimization For Hazardous Mateials Transport. Enshede, the Netherlands: International Institute for Geo-Information Science and Earth Observation [online]. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.7226&rep=rep1&type=pdf [Accessed: 20 November 2020].

Ćirović, G. & Pamučar, D. 2013. Decision support model for prioritizing railway level crossings for safety improvements: Application of the adaptive neuro-fuzzy system. Expert Systems with Applications, 40(6), pp.2208-2223. Available at: https://doi.org/10.1016/j.eswa.2012.10.041.

Ćirović, G., Pamučar, D. & Božanić, D. 2014. Green logistic vehicle routing problem: Routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert Systems with Applications, 41(9), pp.4245-4258. Available at: https://doi.org/10.1016/j.eswa.2014.01.005.

Durmić, E. 2019. Evaluation of criteria for sustainable supplier selection using FUCOM method. Operational Research in Engineering Sciences: Theory and Applications, 2(1), pp.91-107 [online]. Available at: https://oresta.rabek.org/index.php/oresta/article/view/18 [Accessed: 20 November 2020].

Durmić, E., Stević, Ž., Chatterjee, P., Vasiljević, M. & Tomašević, M. 2020. Sustainable supplier selection using combined FUCOM – Rough SAW model. Reports in Mechanical Engineering, 1(1), pp.34-43 [online]. Available at: https://frontpres.rabek.org/index.php/asd/article/view/4 [Accessed: 20 November 2020].

Erceg, Ž. & Mularifović, F. 2019. Integrated MCDM model for processes optimization in supply chain management in wood company. Operational Research in Engineering Sciences: Theory and Applications, 2(1), pp.37-50 [online]. Available at: https://oresta.rabek.org/index.php/oresta/article/view/17 [Accessed: 20 November 2020].

Fazlollahtabar, H., Smailbašić, A. & Stević, Ž. 2019. FUCOM method in group decision-making: Selection of forklift in a warehouse. Decision Making: Applications in Management and Engineering, 2(1), pp.49-65 [online]. Available at: https://dmame.rabek.org/index.php/dmame/article/view/26 [Accessed: 20 November 2020].

Frank, W.C., Thill, J-C. & Batta, R. 2000. Spatial decision support system for hazardous material truck routing. Transportation Research Part C: Emerging Technologies, 8(1-6), pp.337-359. Available at: https://doi.org/10.1016/S0968-090X(00)00007-3.

Jovanović, A., Pamučar, D. & Pejčić-Tarle, S. 2014. Green vehicle routing in urban zones – A neuro-fuzzy approach. Expert systems with Applications, 41(7), pp.3189-3203. Available at: https://doi.org/10.1016/j.eswa.2013.11.015.

Jovanović, D. & Živković, N. 2010. Routing problems in transportation of hazardous materials. Facta universitatis - series: Working and Living Environmental Protection, 7(1), pp.43-51 [online]. Available at: http://facta.junis.ni.ac.rs/walep/walep2010/walep2010-05.html [Accessed: 20 November 2020].

Kayapinar Kaya, S. 2020. Evaluation of the Effect of COVID-19 on Countries’ Sustainable Development Level: A comparative MCDM framework. Operational Research in Engineering Sciences: Theory and Applications, 3(3), pp.101-122 [online]. Available at: https://oresta.rabek.org/index.php/oresta/article/view/76 [Accessed: 20 November 2020].

Kushwaha, D.K., Panchal, D. & Sachdeva, A. 2020. Risk analysis of cutting system under intuitionistic fuzzy environment. Reports in Mechanical Engineering, 1(1), pp.162-173 [online]. Available at: https://www.frontpres.rabek.org/index.php/asd/article/view/21 [Accessed: 20 November 2020].

Leonelli, P., Bonvicini, S. & Spadoni, G. 2000. Hazardous materials transportation: a risk-analysis-based routing methodology. Journal of Hazardous Materials, 71(1-3), pp.283-300. Available at: https://doi.org/10.1016/S0304-3894(99)00084-9.

Milovanović, B. 2012. Development of methodology for the selection of routes for transporting dangerous goods in terms od risc managemet. Ph.D. thesis. Belgrade: University of Belgrade - Faculty of Transport and Traffic Engeeniring.

Milovanović, B., Jovanović, V.D., Živanović, P. & Žeželj, S. 2012. Metodology for establishing the routes for transportation of dangerous goods on the basis of risk level-Case study: City of Belgrade. Scientific Research and Essays, 7(1), pp.38-50. Available at: https://doi.org/10.5897/SRE11.655.

Nenadić, D. 2019. Ranking dangerous sections of the road using MCDM model. Decision Making: Applications in Management and Engineering, 2(1), pp.115-131 [online]. Available at: https://dmame.rabek.org/index.php/dmame/article/view/31 [Accessed: 20 November 2020].

Pamučar, D., Ljubojević, S., Kostadinović, D. & Đorović, B. 2016. Cost and Risk aggregation in multi-objective route planning for hazardous materials transportation - A neuro-fuzzy and artificial bee colony approach. Expert Systems with Applications, 65, pp.1-15. Available at: https://doi.org/10.1016/j.eswa.2016.08.024.

Pamučar, D, Stević, Ž. & Sremac, S. 2018. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry, 10(9), art.number:393. Available at: https://doi.org/10.3390/sym10090393.

Precup, R-E., Preitl , S., Petriu, E., Bojan-Dragos , C-A., Szedlak-Stinean, A-I., Roman, R-C. & Hedrea, E-L. 2020. Model-Based Fuzzy Control Results for Networked Control Systems. Reports in Mechanical Engineering, 1(1), pp.10-25 [online]. Available at: https://www.frontpres.rabek.org/index.php/asd/article/view/2 [Accessed: 20 November 2020].

Puška, A., Stojanović, I. & Maksimović, A. 2019. Evaluation of sustainable rural tourism potential in Brcko district of Bosnia and Herzegovina using multi-criteria analysis. Operational Research in Engineering Sciences: Theory and Applications, 2(2), pp.40-54 [online]. Available at: https://oresta.rabek.org/index.php/oresta/article/view/26 [Accessed: 20 November 2020].

Starčević, S. & Gošić, A. 2014. Methodology for choosing a route for transport of dangerous goods: Case study. Vojnotehnički glasnik/Military Technical Courier, 63(3), pp.165-184 (in Serbian). Available at: https://doi.org/10.5937/vojtehg62-4970.

Vesković, S., Milinković, S., Abramović, B. & Ljubaj, I. 2020. Determining criteria significance in selecting reach stackers by applying the fuzzy PIPRECIA method. Operational Research in Engineering Sciences: Theory and Applications, 3(1), pp.72-88 [online]. Available at: https://oresta.rabek.org/index.php/oresta/article/view/48 [Accessed: 20 November 2020].

Xie, Y., Lu, W., Wang, W. & Quadrifoglio, L. 2012. A multimodal location and routing model for hazardous materials transportation. Journal of Hazardous Materials, 227-228, pp.135-141. Available at: https://doi.org/10.1016/j.jhazmat.2012.05.028.

Zadeh, L.A. 1965. Fuzzy sets. Information and Control, 8(3), pp.338-353. Available at: https://doi.org/10.1016/S0019-9958(65)90241-X.

Zadeh, L A. 1975a. The concept of a linguistic variable and its application to approximate reasoning I. Information Sciences, 8(3), pp.199-249. Available at: https://doi.org/10.1016/0020-0255(75)90036-5.

Zadeh, L.A. 1975b. The concept of a linguistic variable and its application to approximate reasoning II. Information Sciences, 8(4), pp.301-357. Available at: https://doi.org/10.1016/0020-0255(75)90046-8.

Zadeh, L.A. 1975c. The concept of a linguistic variable and its application to approximate reasoning III. Information Sciences, 9(1), pp.43-80. Available at: https://doi.org/10.1016/0020-0255(75)90017-1.

Zhang, J., Hodgson, J. & Erkut, E. 2000. Using GIS to assess the risks of hazardous materials transport in networks. Europian Jurnal of Operational Research, 121(2), pp.316-329. Available at: https://doi.org/10.1016/S0377-2217(99)00220-9.

Zografus, K. & Androutsopoulus, K. 2008. A decision support system for integrated hazardous materials routing and emergency response decisions. Transportation Research Part C: Emerging Technologies, 16(6), pp.684-703. Available at: https://doi.org/10.1016/j.trc.2008.01.004.

Žižović, M. & Pamucar, D. 2019. New model for determining criteria weights: Level Based Weight Assessment (LBWA) model. Decision Making: Applications in Management and Engineering, 2(2), pp.126-137 [online]. Available at: https://dmame.rabek.org/index.php/dmame/article/view/48 [Accessed: 20 November 2020].

Objavljeno
2021/03/22
Rubrika
Originalni naučni radovi