Fizička priroda „anomalnih” elektrona u visoko-vakuumskim diodama

Ključne reči: numerička simulacija, vakuumska elektronika, vakuumski proboj

Sažetak


Uvod/cilj: Rad daje osnovno teorijsko objašnjenje činjenice da u subnanosekundnim vakuumskim diodama postoji grupa elektrona sa kinetičkom energijom mnogo većom od primenjenog napona (pomnoženog sa elementarnim naelektrisanjem) qUmax.

Metode: Primenjena je matematička metoda zasnovana na numeričkom rešenju sistema diferencijalnih jednačina Vlasov-Poison za jednodimenzionalne vakuumske diode različitog dizajna.

Rezultati: Detaljno je prikazano da se u prelaznom vremenskom domenu pojavljuju takozvani „anomalni” elektroni, što karakteriše procese uspostavljanja strujnog toka u vakuumskoj diodi.

Zaključak: Dokazano je da prisustvo „anomalnih” elektrona nije povezano ni sa dizajnom diode, ni sa prisustvom dodatnih nosača struje. U vakuumskim diodama sa subnanosekundnom prednjom ivicom impulsa napona višak energije preko qUmax  može biti veći od 20%.

Reference

Birdsall, C.K. & Langdon, A.B. 1991. Plasma Physics via Computer Simulation. Boca Raton: CRC Press. Available at: https://doi.org/10.1201/9781315275048. ISBN: 9781315275048.

Cheng, C.Z. & Knorr, G. 1976. The integration of the vlasov equation in configuration space. Journal of Computational Physics, 22(3), pp.330–351. Available at: https://doi.org/10.1016/0021-9991(76)90053-X.

Child, C.D. 1911. Discharge From Hot CaO. Physical Review (Series I), 32(5), pp.492-511. Available at: https://doi.org/10.1103/PhysRevSeriesI.32.492.

Griswold, M.E., Fisch, N.J. & Wurtele, J.S. 2012. Amended conjecture on an upper bound to time-dependent space-charge limited current. Physics of Plasmas, 19(2), art.number:024502. Available at: https://doi.org/10.1063/1.3671961.

Jaffé, G., 1944. On the Currents Carried by Electrons of Uniform Initial Velocity. Physical Review, 65(3-4), pp.91-98. Available at: https://doi.org/10.1103/PhysRev.65.91.

Kadish, A., Peter, W. & Jones, M.E. 1985. A Generalization of the Child-Langmuir Relation for One-Dimensional Time-Dependent Diodes. IEEE Transactions on Nuclear Science, 32(5), pp.2576-2578. Available at: https://doi.org/10.1109/TNS.1985.4333985.

Koh, W.S., Ang, L.K. & Kwan, T.J.T. 2005. Three-dimensional Child–Langmuir law for uniform hot electron emission. Physics of Plasmas, 12(5), art.number:053107. Available at: https://doi.org/10.1063/1.1913612.

Kozhevnikov, V.Y., Kozyrev, A.V. & Semeniuk, N.S. 2016. Kinetic modelling of the one-dimensional planar virtual cathode oscillator. In: 24th Telecommunications Forum (TELFOR), Belgrade, pp.1-4, November 22-23. Available at: https://doi.org/10.1109/telfor.2016.7818844.

Kozhevnikov, V.Y., Kozyrev, A.V. & Semeniuk, N.S. 2017. Modeling of Space Charge Effects in Intense Electron Beams: Kinetic Equation Method Versus PIC Method. IEEE Transactions on Plasma Science, 45(10), pp.2762-2766. Available at: https://doi.org/10.1109/tps.2017.2726501.

Kozyrev, A.V., Kozhevnikov, V.Yu., Baksht, E.Kh., Buranchenko, A.G. & Tarasenko, V.F. 2010. Spectrum reconstruction of a nanosecond electron beam from the data on its extinction in thin foils. Russian Physics Journal, 53(4), pp.361-368. Available at: https://doi.org/10.1007/s11182-010-9430-1.

Kozyrev, A., Kozhevnikov, V. & Semeniuk, N. 2018. Why do Electrons with “Anomalous Energies” appear in High-Pressure Gas Discharges? In: Torrisi, L. & Cutroneo, M. (Eds.) EPJ Web of Conferences, 167, art.number:01005. Available at: https://doi.org/10.1051/epjconf/201816701005.

Langmuir, I. 1913. The Effect of Space Charge and Residual Gases on Thermionic Currents in High Vacuum. Physical Review, 2(6), pp.450-486. Available at: https://doi.org/10.1103/physrev.2.450.

Langmuir, I. 1923. The Effect of Space Charge and Initial Velocities on the Potential Distribution and Thermionic Current between Parallel Plane Electrodes. Physical Review, 21(4), pp.419-435. Available at: https://doi.org/10.1103/physrev.21.419.

Lin, M-C. 2005. Space-charge effects of electrons and ions on the steady states of field-emission-limited diodes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 23(2), art.number:636. Available at: https://doi.org/10.1116/1.1875352.

Ragan-Kelley, B., Verboncoeur, J. & Feng, Y. 2009. Two-dimensional axisymmetric Child–Langmuir scaling law. Physics of Plasmas, 16(10), art.number:103102. Available at: https://doi.org/10.1063/1.3243474.

Rokhlenko, A. & Lebowitz, J.L. 2007. Space-charge-limited, two-dimensional unmagnetized flow in a wedge geometry. Journal of Applied Physics, 102(12), art.number:123307. Available at: https://doi.org/10.1063/1.2822471.

Savitzky, A. & Golay, M.J.E. 1964. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), pp.1627-1639. Available at: https://doi.org/10.1021/ac60214a047.

Umeda, T., Nariyuki, Y. & Kariya, D. 2012. A non-oscillatory and conservative semi-Lagrangian scheme with fourth-degree polynomial interpolation for solving the Vlasov equation. Computer Physics Communications, 183(5), pp.1094-1100. Available at: https://doi.org//10.1016/j.cpc.2012.01.011.

Objavljeno
2021/03/22
Rubrika
Originalni naučni radovi