Primena optimizacije sa više izlaza zasnovane na verovatnoći fluida da prenose toplotu u visokonaponskoj opremi

Ključne reči: optimizacija poželjne verovatnoće, visokonaponska oprema, fluidi za prenos toplote, fizičko-hemijska svojstva, dielektrična snaga

Sažetak


Uvod/cilj: Pri izboru odgovarajućeg fluida pogodog za primenu u visokonaponskoj opremi nailazi se na probleme.  Uzrok tome je dvostruka funkcionalnost fluida koja se zahteva za visokonaponsku opremu.

Metode: Ovaj rad uvodi i primenjuje tehniku višeciljne optimizacije zasnovane na verovatnoći prilikom selekcije fluida za prenos toplote u visokonaponskoj opremi. Indeksi korisnosti poželjne verovatnoće tipa „što više – to bolje” i tipa „što manje – to bolje” primenjeni su zavisno od željenih karakteristika ulja.

Rezultati: Pokazano je da je nanofluid sa 0,6 wt% Al2O3 najpogodniji za visokonaponsku opremu u  odnosu na ostale razmatrane proizvedene fluide. Važno je pomenuti da  je kokosovo ulje pokazalo bolje performanse u poređenju sa standardnim uljem. Ukazano je, takođe, i da proizvedeno ulje biljke Jatropha nije pogodno za visokonaponsku opremu.

Zaključak: Preporučuje se preliminarna studija, neophodna za krajnje korišćenje nanofluida sa 0,6 wt% Al2O3,kao i kokosovog ulja za visokonaponsku opremu. Takođe, preporuka je da se poboljšajukarakteristike ulja biljke Jatropha radi korišćenja u visokonaponskoj opremi.

Reference

Abd-Elhady, A.M., Ibrahim, M.E., Taha, T.A. & Izzularab, M.A. 2018. Effect of temperature on AC breakdown voltage of nanofilled transformer oil. IET Science, Measurement & Technology, 12(1), pp.138-144. Available at: https://doi.org/10.1049/iet-smt.2017.0217

Abeysundara, D.C., Weerakoon, C., Lucas, J.R., Gunatunga, K.A.I. & Obadage, K.C. 2001. Coconut oil as an alternative to transformer oil. ResearchGate [online]. Available at: https://www.researchgate.net/publication/268414369_Coconut_oil_as_an_alternative_to_transformer_oil [Accessed: 5 January 2022].

Abifarin, J.K. 2021. Taguchi grey relational analysis on the mechanical properties of natural hydroxyapatite: effect of sintering parameters. The International Journal of Advanced Manufacturing Technology, 117, pp.49-57. Available at: https://doi.org/10.1007/s00170-021-07288-9

Abifarin, J.K., Fidelis, F.B., Abdulrahim, M.Y., Oyedeji, E.O., Nkwuo, T. & Prakash, C. 2022. Response Surface Grey Relational Analysis On The Manufacturing of High Grade Biomedical Ti-13Zr-13Nb (preprint). The International Journal of Advanced Manufacturing Technology. Available at: https://doi.org/10.21203/rs.3.rs-1225030/v1

Abifarin, J.K. & Ofodu, J.C. 2022. Modeling and Grey Relational Multi-response Optimization of Chemical Additives and Engine Parameters on Performance Efficiency of Diesel Engine. International Journal of Grey Systems,  in press. Available at: https://doi.org/10.52812/ijgs.33

Abifarin, J.K., Olubiyi, D.O., Dauda, E.T. & Oyedeji, E.O. 2021c. Taguchi grey relational optimization of the multi-mechanical characteristics of kaolin reinforced hydroxyapatite: effect of fabrication parameters. International Journal of Grey Systems, 1(2), pp.20-32. Available at: https://doi.org/10.52812/ijgs.30

Abifarin, J.K., Prakash, C. & Singh, S. 2021b. Optimization and significance of fabrication parameters on the mechanical properties of 3D printed chitosan/PLA scaffold. Materials Today: Proceedings. Available at: https://doi.org/10.1016/j.matpr.2021.09.386

Abifarin, J.K., Suleiman, M.U., Abifarin, E.A., Fidelis, F.B., Oyelakin, O.K., Jacob, D.I. & Abdulrahim, M.Y. 2021a. Fabrication of mechanically enhanced hydroxyapatite scaffold with the assistance of numerical analysis. The International Journal of Advanced Manufacturing Technology, pp.1-14. Available at: https://doi.org/10.1007/s00170-021-08184-y

Ashby, M.F. 2000. Multi-objective optimization in material design and selection. Acta materialia, 48(1), pp.359-369. Available at: https://doi.org/10.1016/S1359-6454(99)00304-3

Ashby, M.F., Brechet, Y.J.M., Cebon, D. & Salvo, L. 2004. Selection strategies for materials and processes. Materials & Design, 25(1), pp.51-67. Available at: https://doi.org/10.1016/S0261-3069(03)00159-6

Asse, J.B., Mengounou, G.M. & Imano, A.M. 2022. Impact of FeO3 on the AC breakdown voltage and acidity index of a palm kernel oil methyl ester based nanofluid. Energy Reports, 8, pp.275-280. Available at: https://doi.org/10.1016/j.egyr.2021.11.291

Awodi, E., Ishiaku, U.S., Yakubu, M.K. & Abifarin, J.K. 2021. Experimentally Predicted Optimum Processing Parameters Assisted by Numerical Analysis on the Multi-physicomechanical Characteristics of Coir Fiber Reinforced Recycled High Density Polyethylene Composites (preprint). Available at: https://doi.org/10.21203/rs.3.rs-591200/v1

Badicu, L.V., Dumitran, L.M., Notingher, P.V., Setnescu, R. & Setnescu, T. 2011. Mineral oil lifetime estimation using activation energy. In: 2011 IEEE International Conference on Dielectric Liquids, Trondheim, Norway, pp.1-4, June 26-30. Available at: https://doi.org/10.1109/ICDL.2011.6015463

Deshmukh, D. & Angira, M. 2019. Investigation on switching structure material selection for RF-MEMS shunt capacitive switches using Ashby, TOPSIS and VIKOR. Transactions on Electrical and Electronic Materials, 20(3), pp.181-188. Available at: https://doi.org/10.1007/s42341-018-00094-3

Du, J.L., Huang, J., Hu, Y. & Wang, X.F. 2013. Determination of trace lead in beer by cloud point extraction-flame absorption spectrometry. Science and Technology of Food Industry, 11, pp.303-306 [online]. Available at: http://caod.oriprobe.com/articles/38800347/zhuo_dian_zuo_qu___huo_yan_yuan_zi_xi_shou_guang_pu_fa_ce_ding_pi_jiu_.htm [Accessed: 5 January 2022].

Garba, Z.N., Gimba, C.E., & Emmanuel, P. 2013. Production and characterisation of biobased transformer oil from Jatropha Curcas Seed. Journal of Physical Science, 24(2), p.49-61 [online]. Available at: https://jps.usm.my/jatropha-curcas-seed/ [Accessed: 5 January 2022].

Ghoneim, S.S., Dessouky, S. ., Boubakeur, A., Elfaraskoury, A.A., Abou Sharaf, A.B., Mahmoud, K., Lehtonen, M. & Darwish, M.M.F. 2021. Accurate Insulating Oil Breakdown Voltage Model Associated with Different Barrier Effects. Processes, 9(4), art.number:657. Available at: https://doi.org/10.3390/pr9040657

Gong, H., Yu, B., Dai, F., Peng, Y. & Shao, J. 2018. Simulation on performance of a demulsification and dewatering device with coupling double fields: Swirl centrifugal field and high-voltage electric field. Separation and Purification Technology, 207, pp.124-132. Available at: https://doi.org/10.1016/j.seppur.2018.06.049

Hosier, I.L., Guushaa, A., Vaughan, A.S. & Swingler, S.G. 2009. Selection of a suitable vegetable oil for high voltage insulation applications. Journal of Physics: Conference Series, 183(1), art.ID:012014. Available at: https://doi.org//10.1088/1742-6596/183/1/012014

Hosier, I.L., Vaughan, A.S. & Montjen, F.A. 2006. Ageing of biodegradable oils for high voltage insulation systems. In: 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, MO, USA, pp. 481-484, October 15-18. Available at: https://doi.org/10.1109/CEIDP.2006.311974

Jin, H., Andritsch, T., Tsekmes, I.A., Kochetov, R., Morshuis, P.H. & Smit, J.J. 2014. Properties of mineral oil based silica nanofluids. IEEE Transactions on Dielectrics and Electrical Insulation, 21(3), pp.1100-1108. Available at: https://doi.org/10.1109/TDEI.2014.6832254

Kumar, S.S., Iruthayarajan, M.W. & Bakrutheen, M. 2014. Analysis of vegetable liquid insulating medium for applications in high voltage transformers. In: 2014 International Conference on Science Engineering and Management Research (ICSEMR), Chennai, India, pp.1-5, November 27-29. Available at: Available at: https://doi.org/10.1109/ICSEMR.2014.7043606

Lee, J.C., Seo, H.S. & Kim, Y.J. 2012. The increased dielectric breakdown voltage of transformer oil-based nanofluids by an external magnetic field. International Journal of Thermal Sciences, 62, pp.29-33. Available at: https://doi.org/10.1016/j.ijthermalsci.2012.03.013

Lin, C.M., Herianto, S., Syu, S.M., Song, C.H., Chen, H.L. & Hou, C.Y. 2021. Applying a large-scale device using non-thermal plasma for microbial decontamination on shell eggs and its effects on the sensory characteristics. LWT, 142, art.ID:111067. Available at: https://doi.org/10.1016/j.lwt.2021.111067

Liu, J., Fan, X., Zhang, Y., Zheng, H. & Jiao, J. 2020. Temperature correction to dielectric modulus and activation energy prediction of oil-immersed cellulose insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 27(3), pp.956-963. Available at: https://doi.org/10.1109/TDEI.2019.008530

Liu, J., Fan, X., Zheng, H., Zhang, Y., Zhang, C., Lai, B., Wang, J., Ren, G. & Zhang, E. 2019. Aging condition assessment of transformer oil-immersed cellulosic insulation based upon the average activation energy method. Cellulose, 26(6), pp.3891-3908. Available at: https://doi.org/10.1007/s10570-019-02331-1

Minkner, R. & Schmid, J. 2022. The Technology of Instrument Transformers. Current and Voltage Measurement and Insulation Systems. Springer Fachmedien Wiesbaden. Available at: https://doi.org/10.1007/978-3-658-34863-2. ISBN: 978-3-658-34863-2.

Muangpratoom, P. & Pattanadech, N. 2018. Breakdown and partial discharge characteristics of mineral oil-based nanofluids. IET Science, Measurement & Technology, 12(5), pp.609-616. Available at: https://doi.org/10.1049/iet-smt.2017.0080

Ofodu, J.C. & Abifarin, J.K. 2021. Physicochemical and dissolved gas analysis of an in-service transformer oils in Benin, Edo State, Nigeria. Journal of Applied Sciences and Environmental Management, in press.

Oparanti, S.O., Abdelmalik, A.A., Khaleed, A.A., Abifarin, J.K., Suleiman, M.U. & Oteikwu, V.E. 2022. Synthesis and characterization of cooling biodegradable nanofluids from non-edible oil for high voltage application. Materials Chemistry and Physics, 277, art.ID:125485. Available at: https://doi.org/10.1016/j.matchemphys.2021.125485

Oparanti, S.O., Khaleed, A.A. & Abdelmalik, A.A. 2021a. Nanofluid from Palm Kernel Oil for High Voltage Insulation. Materials Chemistry and Physics, 259, art.ID:123961. Available at: https://doi.org/10.1016/j.matchemphys.2020.123961

Oparanti, S.O., Khaleed, A.A. & Abdelmalik, A.A. 2021b. AC breakdown analysis of synthesized nanofluids for oil-filled transformer insulation. The International Journal of Advanced Manufacturing Technology, 117(5), pp.1395-1403. Available at: https://doi.org/10.1007/s00170-021-07631-0

Oparanti, S.O., Khaleed, A.A., Abdelmalik, A.A. & Chalashkanov, N.M. 2020. Dielectric characterization of palm kernel oil ester-based insulating nanofluid. In: 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), East Rutherford, NJ, USA, pp.211-214, October 18-30. Available at: https://doi.org/10.1109/CEIDP49254.2020.9437477

Oyelaran, O.A., Bolaji, B.O. & Samuel, O.D. 2020. Assessment of calabash seed oil as biobased insulating fluid for power transformers. Journal of Chemical Technology and Metallurgy, 55(2), pp.307-313 [online]. Available at: http://repository.fuoye.edu.ng/handle/123456789/2317 [Accessed: 5 January 2022].

Peppas, G.D., Bakandritsos, A., Charalampakos, V.P., Pyrgioti, E.C., Tucek, J., Zboril, R. & Gonos, I.F. 2016a. Ultrastable Natural Ester-Based Nanofluids for High Voltage Insulation Applications. ACS Applied Materials & Interfaces, 8(38), pp.25202-25209. Available at: https://doi.org/10.1021/acsami.6b06084

Peppas, G.D., Charalampakos, V.P., Pyrgioti, E.C., Danikas, M.G., Bakandritsos, A. & Gonos, I.F. 2016b. Statistical investigation of AC breakdown voltage of nanofluids compared with mineral and natural ester oil. IET Science, Measurement & Technology, 10(6), pp.644-652. Available at: https://doi.org/10.1049/iet-smt.2016.0031

Rafiq, M., Lv, Y. & Li, C. 2016. A review on properties, opportunities, and challenges of transformer oil-based nanofluids. Journal of nanomaterials, 2016, art.ID 8371560. Available at: https://doi.org/10.1155/2016/8371560

Sitinjak, F., Suhariadi, I. & Imsak, L. 2003. Study on the characteristics of palm oil and it's derivatives as liquid insulating materials. In: Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No. 03CH37417), Nagoya, Japan, 2, pp.495-498, June 1-5. Available at: https://doi.org/10.1109/ICPADM.2003.1218461

Srinivasa, D.M. & Surendra, U. 2019. Comparative study of breakdown phenomena and viscosity in liquid dielectrics. In: 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 1, pp.1-4, March 22-23. Available at: https://doi.org/10.1109/i-PACT44901.2019.8960134

Wang, Y. & Teng, H. 2021. A New" Intersection" Method for Multi-Objective Optimization in Material Selection. Tehnički glasnik, 15(4), pp.562-568. Available at: https://doi.org/10.31803/tg-20210901142449

Yaacob, M.M. & Alsaedi, M.A. 2015. Use palm oil as alternative with insulation oil in high voltage equipment. Physical Science International Journal, 5(3), pp.172-178 [online] Available at: https://www.journalpsij.com/index.php/PSIJ/article/view/23629 [Accessed: 5 January 2022].

Zhang, M., Li, L., Liu, H., Jia, H., Liu, J. & Meng, F. 2021. Method for quantitative assessment of transformer oil‐paper insulation non‐uniform ageing parameters based on frequency domain dielectric response. IET Science, Measurement & Technology. Available at: https://doi.org/10.1049/smt2.12091

Zheng, M. 2022. Application of probability-based multi-objective optimization in material engineering. Vojnotehnički glasnik/Military Technical Courier, 70(1), pp.1-12. Available at: https://doi.org/10.5937/vojtehg70-35366

Objavljeno
2022/03/19
Rubrika
Originalni naučni radovi