Efikasan pristup izračunavanju određenog integrala sa oko desetak tačaka uzorkovanja

Ključne reči: metod uniformnog projektovanja, tačke dobre mreže, određeni integral, područje izdvojenog vrha, tačke konačnog uzorkovanja

Sažetak


Uvod/cilj: Približni pristup izračunavanju određenog integrala predstavljao je problem još od početaka intgralnog računa zbog potreba u oblastima nauke i inženjerstva. U većini slučajeva u praksi, integrand je složen, što otežava dobijanje tačne vrednosti integracije, tako da je, za praktične potrebe,  dovoljno naći približnu vrednost određenog integrala sa izvesnom tačnošću. U ovom radu predlaže se efikasan pristup izračunavanju određenog integrala s malim brojem tačaka uzorkovanja, zasnovan na metodu uniformnog projektovanja sa stanovišta praktične primene.

Metode: Distribucija tačaka uzorkovanja u području izdvojenog vrha je deterministička i uniformna, što sledi iz pravila metoda uniformnog projektovanja i tačaka dobre rešetke.

Rezultati: Efikasna procena određenog integrala za periodičnu funkciju u njenom području izdvojenog vrha može se dobiti pomoću 11 tačaka uzorkovanja u jednoj dimenziji, 17 tačaka uzorkovanja u dve dimenzije i 19 tačaka uzorkovanja u tri dimenzije.

Zaključak: Efikasan pristup određenom intervalu, koji je u radu razvijen na osnovu metoda uniformnog projektovanja, perspektivan je sa stanovišta praktične primene. Tačke uzorkovanja su deterministički i uniformno raspoređene u skladu s pravilima metoda uniformnog projektovanja i tačaka dobre mreže. Efikasan pristup biće od koristi za relevantna istraživanja i praktične primene.

Reference

Byrd, P.F. & Friedman, M.D. 1971. Hand Book of Elliptic Integrals for Engineers and Scientists, 2nd Ed. Berlin, Heidelberg: Springer-Verlag. Available at: https://doi.org/10.1007/978-3-642-65138-0

Caflisch, R.E., Morokoff, W. & Owen, A. 1997. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension. Journal of Computational Finance, 1(1), pp.27-46. Available at: https://doi.org/10.21314/JCF.1997.005  

Chen, Z., Zheng, X., Luo, C., Zhang, Y. & Chen, X. 2010. Integration of Multivariate Functions by Orthogonal Arrays. Journal of Shanghai Institute of Technology (Natural Science), 2, pp.119-123 [online]. In Chinese. Available at: http://caod.oriprobe.com/articles/25690087/Integration_of_Multivariate_Functions_by_Orthogonal_Arrays.htm [Accessed: 20 January 2022].

Fang, K-T., Liu, M-Q., Qin, H. & Zhou, Y-D. 2018. Theory and Application of Uniform Experimental Designs. Beijing: Science Press & Singapore: Springer Nature. Available at: https://doi.org/10.1007/978-981-13-2041-5

Fang, K-T. & Wang, Y. 1994. Number-theoretic Methods in Statistics. London, UK: Chapman & Hall. ISBN: 0-412-46520-5.

Hua, L-K. & Wang, Y. 1981. Applications of Number Theory to Numerical Analysis. Berlin; New York: Springer-Verlag & Beijing: Science Press. ISBN: 9783540103820.

Ju, S., Yang, X. & Liu, G. 2005. Application of elliptic integral calculus in computing magnetic induction intensity. Journal of Changchun Institute of Technology (Natural Science Edition), 6, pp.70-72 [online]. Available at: https://kns.cnki.net/kcms/detail/detail.aspx? dbcode=CJFD&dbname=CJFD2005&filename=CGCZ200504024&uniplatform=NZKPT&v=ryxpXwQqLAxChu6YS1miYma1Skh6baZ6482KF04E5VURFrx0iFF1b9u19uS2b7G2 (in Chinese) [Accessed: 15 January 2022].

Leobacher, G. & Pillichshammer, F. 2014. Introduction to Quasi-Monte Carlo Integration and Applications. Springer International Publishing Switzerland. Available at: https://doi.org/10.1007/978-3-319-03425-6

Navidi, W. 2020. Statistics for Engineers and Scientists, 5th edition. New York: McGraw-Hill Education. ISBN: 9781260431025.

Paskov, S.H. 1996. New methodologies for valuing derivatives. In: Pliska, S. & Dempster, M. & (Eds.) Mathematics of Derivative Securities, pp.545-582. Cambridge: Isaac Newton Institute & Cambridge University Press. Available at: https://doi.org/10.7916/D8TB1FRJ

Paskov, S.H. & Traub, J.F. 1995. Faster valuation of financial derivatives. Journal of Portfolio Management 22(1), pp.113-120. Available at: https://doi.org/10.3905/jpm.1995.409541

Ripley, B.D. 1981. Spatial Statistics. Hoboken, NJ: John Wiley & Sons. ISBN: 0-47169116-X.

Sloan, I.H. & Woiniakowski, H. 1998. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals?. Journal of Complexity, 14(1), pp.1-33. Available at: https://doi.org/10.1006/jcom.1997.0463

Song, S. & Chen, S. 2004. Two Effective Quadrature Schemes for Calculating Double Integration. Journal of Zhengzhou University, 36, pp.16-19 [online]. Available at: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode= CJFD&dbnam e=CJFD2004&filename=ZZDZ200401003&uniplatform=NZKPT & v=kCi42ClkKjv8yV3dacrXPRtdvn0JHnYAx3nBIo6p2qVlawH9fBMWaaiKoulEFMmf (in Chinese) [Accessed: 15 January 2022].

Tezuka, S. 1998. Financial applications of Monte Carlo and Quasi-Monte Carlo methods. In: Hellekalek, P. & Larcher, G.(Eds.) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, 138, pp.303-332, New York: Springer. Available at: https://doi.org/10.1007/978-1-4612-1702-2_7

Tezuka, S. 2002. Quasi-Monte Carlo - Discrepancy between theory and practice. In: Fang, K.T., Niederreiter, H. & Hickernell, F.J. (Eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp.124-140. Heidelberg: Springer-Verlag. Available at: https://doi.org/10.1007/978-3-642-56046-0_8

Objavljeno
2022/03/19
Rubrika
Originalni naučni radovi