Definisanje rizika na putnim deonicama pri transportu opasnog tereta u Vojsci Srbije primenom modela linearnog matematičkog programiranja

Ključne reči: model DEA, fuzzy logički sistem, opasan teret, rizik, preferencija prema ruti.

Sažetak


Uvod/cilj: U radu je predstavljen model za izbor rute, za transport opasnog tereta, upotrebom modela DEA (Data Envelopment Analysis) i fuzzy logičkih sistema. Prikazani model se koristi za definisanje rizika na putnim deonicama pri transportu opasnog tereta, kao i za izbor optimalne rute za realizaciju transportnog zadatka.

Metode: Model se sastoji od dve faze. U prvoj fazi je primenjena metoda DEA koja se sastoji od dva modela: imputa i autputa, povezana u izlazni DEA final model, koji pokazuje rute sa zadovoljavajućim stepenom bezbednosti saobraćaja i istovremeno eliminiše rute sa niskim stepenom bezbednosti saobraćaja. Druga faza uključuje primenu fuzzy logičkih sistema, a kao izlaz iz fuzzy sistema data je preferencija prema ruti. Evaluacija rute vrši se na osnovu šest kriterijuma, a to su: dužina rute, broj pristupnih tačaka, PGDS (prosečan godišnji dnevni saobraćaj), broj saobraćajnih nezgoda sa poginulim licima, broj saobraćajnih nezgoda sa povređenim licima i broj saobraćajnih nezgoda sa materijalnom štetom. Kada se unesu vrednosti ulaznih kriterijuma, vrši se proračun i evaluacija, pri čemu se, kao izlaz iz razvijenog sistema, dobija preferencija prema unetoj ruti (ruta sa najmanjim nivoom rizika). Korišćeni kriterijumi definisani su na osnovu ekspertskih procena.

Rezultati: Korisnički program koristi se kao podrška u odlučivanju organima saobraćajne službe.

Zaključak: Korisnička platforma kreirana je u programskom paketu Matlab R2015a i pruža mogućnost nadogradnje i prilagođavanja konkretnom problemu.

Reference

Amirteimoori, A. & Khoshandam, L. 2011. A Data Envelopment Analysis Approach to Supply Chain Efficiency. Advances in Decision Sciences, 2011(art.ID:608324). Available at: https://doi.org/10.1155/2011/608324.>

Baykasoglu, A. & Golcuk, I. 2020. Revising ranking accuracy within WASPAS method. Kybernetes, 49(3), pp.885-895. Available at: https://doi.org/10.1108/K-01-2019-0052.>

Božanić, D. & Pamučar, D. 2014. Making of fuzzy logic system rules base for decision making support by aggregation of weights of rules premises. Tehnika, 69(1), pp.129-138 (in Serbian). Available at: https://doi.org/10.5937/tehnika1401129B.

Bubbico, R., Di Cave, S. & Mazzarotta, B. 2004. Risk analysis for road and rail transport of hazardous materials: a simplified approach. Journal of Loss Prevention in the Process Industries, 17(6), pp.477-482. Available at: https://doi.org/10.1016/j.jlp.2004.08.010.>

Cassini, P. 1998. Road transportation of dangerous goods: quantitative risk assessment and route comparison. Journal of hazardous materials, 61(1-3), pp.133-138. Available at: https://doi.org/10.1016/S0304-3894(98)00117-4.>

Castillo, J.E.A. 2004. Route Optimization For Hazardous Materials Transport. Ph.D. thesis. Enschede, The Netherlands: International institute for geo-information science and earth observation [online]. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.7226&rep=rep1&type=pdf [Accessed: 20January 2022].

Cavaignac, L., Dumas, A.& Petiot, R. 2021. Third-party logistics efficiency: an innovative two-stage DEA analysis of the French market. International Journal of Logistics Research and Applications, 24(6), pp.581-604.

Cooper, W.W. 2014. Origin and Development of Data Envelopment Analysis: Challenges and Opportunities. Data Envelopment Analysis Journal, 1(1), pp.3-10. Available at: https://doi.org/10.1561/103.00000002.>

Dantzig, G.B. 1947. Maximization of a linear function of variables subject to linear inequalities. In: Koopmans, T.C. (Ed.) Activity Analysis of Production and Allocation, pp.339-347. New York-London: Wiley & Chapman-Hall.

Dawson, P., Dobson, S. & Gerrard, B. 2000. Estimating coach efficiency in professional team sports: Evidence from English Association Eootball. Scottish Journal of Political Economy, 47(4), pp.399-421. Available at: https://doi.org/10.1111/1467-9485.00170.>

Fabiano, B., Curro, F., Palazzi, E. & Pastorino, R. 2002. A framework for risk assessment and decision - making strategies in dangerous good transportation. Journal of Hazardous Materials, 93(1), pp.1-15. Available at: https://doi.org/10.1016/S0304-3894(02)00034-1.>

Farrell, M. 1957. The Measurement of Productive Efficiency. Journal of the Royal Statistical Society, Series A (General), 120(3), pp.253-290. Available at: https://doi.org/10.2307/2343100.>

Jeremić, V.M. 2012. Statistical model of efficiency based on Ivanovic distance. Ph.D. thesis. Belgrade: University of Belgrade, Faculty of Organizational Sciences (in Serbian) [online]. Available at: http://nardus.mpn.gov.rs/bitstream/handle/123456789/1780/Disertacija.pdf?sequ [Accessed: 20 January 2022].

Kantorovich, L.V. 1960. Mathematical Methods of Organizing And Planning Production. Management Science, 6(4), pp.363-505. Available at: https://doi.org/10.1287/mnsc.6.4.366.>

Karande, A., Krishna, A., Jayasurya, R., Gopan, G., Gopinath, M.V., Kumar, S., Anoop, K.P., Panicker, V.V. & Varaprasad, G. 2019. Performance Analysis of Storage Warehouses in a Food Grain Supply Chain using Data Envelopment Analysis. In: 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, March 29-30, pp.1-4. Available at: https://doi.org/10.1109/ICSCAN.2019.8878776.>

Lavell, A. 2000. An approach to concept and definition in risk management terminology and practice. Geneva: ERD-UNDP, pp.1015-1022.

Milovanović, B. 2012. Development of methodology for the selection of routes for transporting dangerous goods in terms od risc managemet. Ph.D. thesis. Belgrade: University of Belgrade, Faculty of Transport and Traffic Engeeniring (in Serbian). Available at: https://doi.org/10.2298/BG20120706MILOVANOVIC.>

Mitrović Simić, J., Stević, Ž., Zavadskas, E.K., Bogdanović, V., Subotić, M., & Mardani, A. 2020. A Novel CRITIC-Fuzzy FUCOM-DEA-Fuzzy MARCOS Model for Safety Evaluation of Road Sections Based on Geometric Parameters of Road. Symmetry, 12(12), art.number:2006. Available at: https://doi.org/10.3390/sym12122006.

Nenadić, D. 2019.  Ranking danerous sections of the road using MCDM model. Decision Making: Aplications in Management and Engineering, 2(1), pp.115-131 [online]. Available at: https://dmame.rabek.org/index.php/dmame/article/view/31> (in Serbian) [Accessed: 20 January 2022].

Ormsby, R.W. & Le, N.B. 1988. Societal risk curves for historical hazardous chemical transportation accidents, Preventing Major Chemical and Related Process Accidents, pp.133-147. Institution of Chemical Engineers, Great Britain.

Pamučar, D., Stević, Ž. & Sremac, S. 2018. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry, 10(9), art.number:393. Available at: https://doi.org/10.3390/sym10090393>

Pamučar, D., Žižović, M., Biswas, S. & Božanić, D. 2021. A new logarithm methodology of additive weights (LMAW) for multi-criteria decision-making: Application in logistics. Facta Universitatis, series: Mechanical Engineering, 19(3), pp.361-380. Available at: https://doi.org/10.22190/FUME210214031P>

Srdjevic, B., Medeiros, Y., Srdjevic, Z. & Schaer, M. 2002. Evaluating Management Strategies in Paraguacu River Basin by Analytic Hierarchy Process. In: 1st International Congress on Environmental Modelling and Software, Lugano, Switzerland, pp.42-47, June 24-27 [online]. Available at: https://scholarsarchive.byu.edu/iemssconference/2002/all/38/> [Accessed: 20 January 2022].

Thomson, B.J. 1999. International co-operation in hazardous materials accident preventions. Journal of Loss Prevention in the Process Industries, 12(3), pp.217-225. Available at: https://doi.org/10.1016/S0950-4230(98)00052-7.>

Tian, N., Tang, S., Che, A. & Wu, P. 2020. Measuring regional transport sustainability using super-efficiency SBM-DEA with weighting preference. Journal of Cleaner Production, 242, art.number:118474. Available at: https://doi.org/10.1016/j.jclepro.2019.118474.>

Vesković, S., Blagojević, A., Kasalica, S., Gojić, A., & Allamani, A. 2020. The application of the fuzzy AHP and DEA for measuring the efficiency of freight transport railway undertakings. Operational Research in Engineering Sciences: Theory and Applications, 3(2), pp.1-23 [online]. Available at:https://www.oresta.rabek.org/index.php/oresta/article/view/52> [Accessed: 20 January 2022].

Zadeh, L.A. 1965. Fuzzy sets. Information and Control, 8(3), pp.338-353. Available at: https://doi.org/10.1016/S0019-9958(65)90241-X.>

Objavljeno
2022/10/14
Rubrika
Originalni naučni radovi