Dimenzionisanje pogona i upravljanje energijom hibridnog guseničnog vozila redne konfiguracije

Ključne reči: gusenično vozilo, hibridno vozilo, upravljanje energijom, strategija upravljanja energijom, potrošnja goriva

Sažetak


Uvod/cilj: U radu je predstavljen sistematski pristup razvoju rednog hibridnog električnog guseničnog vozila (HETV) uključujući dimenzionisanje pogona i izbor odgovarajuće strategije upravljanja energijom (EMS).

Metode: Elementi pogonskog sklopa su dimenzionisani, uzimajući u obzir ključne zahteve performansi. Predložene su tri strategije upravljanja energijom: termostatska strategija (TCS), strategija upravljanja praćenjem opterećenja (PFCS) i strategija optimalnog izvora energije (OPSS). Evaluacija konfiguracije pogona i tri predložene EMS izvršene su u okruženju Simulink korišćenjem ciklusa vožnje koji sadrži delove sa znatnim ubrzanjima, kočenjima i upravljanjem.

Rezultati: Rezultati su pokazali da se OPSS pokazala kao najbolja strategija zbog povećane uštede goriva i niske varijacije stanja napunjenosti baterije (SOC). U poređenju sa prethodnim istraživanjem istog vozila sa paralelnom hibridnom konfiguracijom, postignuti su znatno bolji rezultati. Analiza rezultata pokazuje da se predloženom konfiguracijom pogona i strategijom upravljanja potrošnja goriva smanjuje za 53,79 %, što ukazuje na to da je dimenzionisanje hibridnog pogona pravilno izvedeno.

Zaključak: Rezultati ovog rada su od velikog značaja za razumevanje uticaja pravilnog dimenzionisanja pogona na ekonomičnost vozila. U poređenju sa referentnim vozilom, predložena konfiguracija postiže značajno poboljšanje, od kojeg se najveći deo pripisuje adekvatnom dimenzionisanju. OPSS se pokazala kao najbolja strategija, čime je potvrđena teorijska hipoteza. Pokazalo se da je redna hibridna konfiguracija sa OPSS kao EMS najbolja za upotrebu u HETV-u. 

Reference

Arıkan, F.R. 2019. Sizing of a series hybrid electric vehicle. Master’s thesis, Ankara, Turkey: Middle East Technical University, School of Natural and Applied Sciences [online]. Available at: http://etd.lib.metu.edu.tr/upload/12624677/index.pdf [Accessed: 1 September 2022].

Borthakur, S. & Subramanian, S.C. 2016. Parameter matching and optimization of a series hybrid electric vehicle powertrain system. In: ASME International Mechanical Engineering Congress and Exposition, vol. 50664. American Society of Mechanical Engineers, p. V012T16A003. Available at: http://doi.org/10.1115/IMECE2016-66312

Ehsani, M., Gao, Y., Longo, S. & Ebrahimi, K.M. 2018. Modern electric, hybrid electric, and fuel cell vehicles. CRC press. Available at: https://doi.org/10.1201/9780429504884

Galvagno, E., Rondinelli, E. & Velardocchia, M. 2012. Electro-mechanical transmission modelling for series-hybrid tracked tanks. International Journal of Heavy Vehicle Systems, 19(3), pp. 256–280. Available at: http://doi.org/10.1504/IJHVS.2012.047916

Hannan, M.A., Azidin, F. & Mohamed, A. 2014. Hybrid electric vehicles and their challenges: A review. Renewable and Sustainable Energy Reviews, 29, pp. 135–150. Available at: https://doi.org/10.1016/j.rser.2013.08.097

Jimenez-Espadafor, F.J., Marín, J.J.R., Villanueva, J.A.B., García, M.T., Trujillo, E.C. & Ojeda, F.J.F. 2011. Infantry mobility hybrid electric vehicle performance analysis and design. Applied energy, 88(8), pp. 2641–2652. Available at: https://doi.org/10.1016/j.apenergy.2011.02.010

Khalil, G. 2009. Challenges of hybrid electric vehicles for military applications. In: 2009 IEEE Vehicle Power and Propulsion Conference. Dearborn, MI, USA, pp.1–3, September 7–10. Available at: https://doi.org/10.1109/VPPC.2009.5289878

Liu, T., Zou, Y., Liu, D. & Sun, F. 2015. Reinforcement learning of adaptive energy management with transition probability for a hybrid electric tracked vehicle. IEEE Transactions on Industrial Electronics, 62(12), pp. 7837–7846. Available at: https://doi.org/10.1109/TIE.2015.2475419

Milićević, S.V., Blagojević, I.A. & Muždeka, S.R. 2021. Advanced rule-based energy management for better fuel economy of hybrid electric tracked vehicle. FME Transactions, 49(3), pp. 711–718. Available at: https://doi.org/10.5937/fme2103711M

Milićević, S. & Muždeka, S. 2021. Modelling and performance analysis of the BVP M-80A hybrid drive. Vojnotehnički glasnik/Military Technical Courier, 69(1), pp. 64–87. Available at: https://doi.org/10.5937/vojtehg69-28232

Qin, Z., Luo, Y., Zhuang, W., Pan, Z., Li, K. & Peng, H. 2018. Simultaneous optimization of topology, control and size for multi-mode hybrid tracked vehicles. Applied energy, 212, pp. 1627–1641. Available at: https://doi.org/10.1016/j.apenergy.2017.12.081

Randive, V., Subramanian, S.C. & Thondiyath, A. 2019. Component Sizing of Single and Dual Drive Series Hybrid Electric Powertrain for Military Tracked Vehicles. In: 2019 IEEE Vehicle Power and Propulsion Conference (VPPC). Hanoi, Vietnam, pp. 1–6, October 14–17. Available at: https://doi.org/10.1109/VPPC46532.2019.8952308

Randive, V., Subramanian, S.C. & Thondiyath, A. 2021. Design and analysis of a hybrid electric powertrain for military tracked vehicles. Energy, 229, p. 120768. Available at: https://doi.org/10.1016/j.energy.2021.120768

Rizzo, D.M. 2014. Military vehicle optimization and control. Ph.D. thesis, Michigan Technological University. Available at: https://doi.org/10.37099/mtu.dc.etds/863

Shabbir, W. 2015. Control Strategies for Series Hybrid Electric Vehicles. Ph.D. thesis, Imperial College London. Available at: https://spiral.imperial.ac.uk/bitstream/10044/1/39791/1/Shabbir-W-2015-PhD-Thesis.pdf.

Shabbir, W. & Evangelou, S.A. 2019. Threshold-changing control strategy for series hybrid electric vehicles. Applied energy, 235, pp. 761–775. Available at: https://doi.org/10.1016/j.apenergy.2018.11.003

Wong, J.Y. 2022. Theory of ground vehicles. John Wiley & Sons. Available at: http://doi.org/10.1002/9781119719984

Wu, G., Zhang, X. & Dong, Z. 2013. Impacts of two-speed gearbox on electric vehicle’s fuel economy and performance, vol. 2. Warrendale, PA, USA: SAE International. Available at: https://doi.org/10.4271/2013-01-0349

Zhang, B., Guo, S., Zhang, X., Xue, Q. & Teng, L. 2020. Adaptive smoothing power following control strategy based on an optimal efficiency map for a hybrid electric tracked vehicle. Energies, 13(8), p. 1893. Available at: https://doi.org/10.3390/en13081893

Zou, Y., Liu, T., Liu, D. & Sun, F. 2016. Reinforcement learning-based realtime energy management for a hybrid tracked vehicle. Applied energy, 171, pp. 372–382. Available at: https://doi.org/10.1016/j.apenergy.2016.03.082

Zou, Y., Sun, F., Hu, X., Guzzella, L. & Peng, H. 2012a. Combined optimal sizing and control for a hybrid tracked vehicle. Energies, 5(11), pp. 4697–4710. Available at: https://doi.org/10.3390/en5114697

Zou, Y., Sun, F.C., Zhang, C.N. & Li, J.Q. 2012b. Optimal energy management strategy for hybrid electric tracked vehicles. International Journal of Vehicle Design, 58(2-4), pp. 307–324. Available at: https://doi.org/10.1504/IJVD.2012.047390

Objavljeno
2022/10/14
Rubrika
Originalni naučni radovi