O topološkim indeksima koji zavise od stepena čvorova i grana

Ključne reči: potpuni topološki indeksi, grafovske invarijante koje zavise od stepena čvorova i grana, stepen (čvora), stepen (grane)

Sažetak


Uvod/cilj: Potpuni topološki indeksi (TIent) obrazuju klasu grafovskih invarijanti koji zavise od stepena čvorova i stepena grana. Ustanovljene su neke opšte osobine ovih invarijanti.

Metode: Primenjivani su postupci kombinatorne teorije grafova. 

Rezultati: Nađena je nova opšta formula za TIent. Za grafove bez trouglova i četvorouglova ova formula se značajno pojednostavljuje. 

Zaključak: Rad doprinosi teoriji grafovskih invarijanti koji zavise od stepena čvorova i stepena grana. 

 

Biografija autora

Ivan Gutman, Univerzitet u Kragujevcu, Prirodno-matematički fakultet, Kragujevac, Republika Srbija

Reference

Alwardi, A., Alqesmah, A., Rangarajan, R. & Cangul, I.N. 2018. Entire Zagreb indices of graphs. Discrete Mathematics, Algorithms and Applications, 10(03), p.1850037. Available at: https://doi.org/10.1142/S1793830918500374.

Bharali, A., Doley, A. & Buragohain, J. 2020. Entire forgotten topological index of graphs. Proyecciones (Antofagasta), 39(4), pp. 1019–1032. Available at: https://doi.org/10.22199/issn.0717-6279-2020-04-0064.

Bondy, J.A. & Murty, U.S.R. 1976. Graph theory with applications. Macmillan Press. ISBN: 0-444-19451-7.

Gutman, I. 2023. On the spectral radius of VDB graph matrices. Vojnotehnički glasnik/Military Technical Courier, 71(1), pp. 1–8. Available at: https://doi.org/10.5937/vojtehg71-41411.

Harary, F. 1969. Graph Theory. Boca Raton: CRC Press. ISBN: 9780429493768.

Kosari, S., Dehgardi, N. & Khan, A. 2023. Lower bound on the KG-Sombor index. Communications in Combinatorics and Optimization, 8(4), pp. 751–757. Available at: https://doi.org/10.22049/CCO.2023.28666.1662.

Kulli, V.R. 2016. On K Banhatti indices of graphs. Journal of Computer and Mathematical Sciences, 7(4), pp. 213–218. ISSN 0976-5727 (Print), ISSN 2319-8133 (Online).

Kulli, V.R. 2022. KG Sombor indices of certain chemical drugs. International Journal of Engineering Sciences & Research Technology, 11(6), pp. 27–35 [online]. Available at: https://www.ijesrt.com/index.php/J-ijesrt/article/view/48 [Accessed: 10 August 2023].

Kulli, V.R. & Gutman, I. 2022. Sombor and KG-Sombor Indices of Benzenoid Systems and Phenylenes. Annals of Pure and Applied Mathematics, 26(2), pp.49–53. Available at: https://doi.org/10.22457/apam.v26n2a01883.

Kulli, V.R., Harish, N., Chaluvaraju, B. & Gutman, I. 2022. Mathematical properties of KG Sombor index. Bulletin of International Mathematical Virtual Institute, 12(2), pp. 379–386[online]. Available at: http://www.imvibl.org/buletin/bulletin_imvi_12_2_22/bulletin_imvi_12_2_22_379_386.pdf [Accessed: 10 August 2023].

Madhumitha, K., D’Souza, S. & Nayak, S. 2024. KG Sombor energy of graphs with self loops. Communications in Combinatorics and Optimization. in press.

Movahedi, F. & Akhbari, M.H. 2023. Entire Sombor index of graphs. Iranian Journal of Mathematical Chemistry, 14(1), pp. 33–45. Available at: https://doi.org/10.22052/IJMC.2022.248350.1663.

Saleh, A. & Cangul, I.N. 2021. On the entire Randic index of graphs. Advances and Applications in Mathematical Sciences, 20(8), pp. 1559–1569 [online]. Available at: https://www.mililink.com/upload/article/1367760163aams_vol_208_june_2021_a20_p1559-1569_a._saleh_and_i._n._canguli.pdf [Accessed: 10 August 2023].

Todeschini, R. & Consonni, V. 2000. Handbook of molecular descriptors. Weinheim: Wiley–VCH. ISBN: 3-52-29913-0.

Objavljeno
2023/12/04
Rubrika
Originalni naučni radovi