Primena fazi logičkog kontrolera tipa 2 i kontrolera frakcionog reda za regulisanje brzine direktnog upravljanja momentom sile u indukcionom motoru

  • Younes Abdelbadie Mabrouk Univerzitet Ammar Telidji, Odsek za elektrotehniku, Laboratorija za proučavanje i razvoj poluprovodnika i dielektričnih materijala (LEDMASD), Laguat, Narodna Demokratska Republika Alžir https://orcid.org/0009-0007-5220-3685
  • Bachir Mokhtari Univerzitet Ammar Telidji, Odsek za elektrotehniku, Laboratorija za proučavanje i razvoj poluprovodnika i dielektričnih materijala (LEDMASD), Laguat, Narodna Demokratska Republika Alžir https://orcid.org/0000-0003-4643-8940
  • Tayeb Allaoui Univerzitet u Tiaretu, Odsek za elektrotehniku i energetiku i Laboratorija za inženjerstvo i računarsko inženjerstvo (L2GEGI), Tiaret, Narodna Demokratska Republika Alžir https://orcid.org/0000-0001-9295-073X
Ključne reči: direktno upravljanje momentom sile, fazi logički kontroler, kontroler frakcionog reda, indukcioni motor, FFT

Sažetak


Uvod/cilj: Među odličnim strategijama za upravljanje momentom sile kod asinhronih motora izdvaja se direktno upravljanje momentom sile. Ova tehnika omogućava direktno upravljanje magnetnim fluksom i elektromagnetnim momentom sile bez potrebe da se rezdvajaju. Takođe, direktno upravljanje momentom, kao i svaka strategija upravljanja, ima svoje nedostatke od kojih su najveći rad na promenljivim prekidačkim frekvencijama, kao i elektromagnetna talasnost usled korišćenja regulatora histereze. To dovodi do pogoršanja akustičke buke, naročito pri malim brzinama, kao i do pogoršanja performansi upravljanja.

Metode: Da bi se poboljšale performanse direktnog upravljanja momentom, naročito pri malim brzinama, predlaže se korišćenje PID kontrolera frakcionog reda u kombinaciji sa fazi logičkim kontrolerom tipa 2,  kako bi se regulisala brzina indukcionog motora kontrolisanog putem direktnog upravljanja momentom.

Rezultati: Ispitivanja koja su vršena pomoću predloženih regulatora pokazuju da je došlo do poboljšanja u sistemu.

Zaključak: Predložena rešenja mogu da dovedu do boljeg upravljanja.

Reference

Aib, A., Khodja, D.E. & Chakroune, S. 2023. Field programmable gate array hardware in the loop validation of fuzzy direct torque control for induction machine drive. Electrical Engineering & Electromechanics, 3, pp. 28-35. Available at: https://doi.org/10.20998/2074-272X.2023.3.04.

Belhamdi, S. & Amar, G. 2017. Direct Field-Oriented Control using Fuzzy Logic Type-2 for Induction Motor with Broken Rotor Bars. MSE JOURNALS-AMSE IIETA publication-2017-Series: Advances C; Vol. 72; N°4; pp 203-212 Available at: https://doi.org/10.18280/ama_c.720401.

Benbouhenni, H., Taleb, R. & Chabni, F. 2017. Commande DTC cinq niveaux à 24 secteurs d'un moteur asynchrone par méthodes intelligentes. In: 1st Algerian Multi-Conference on Computer, Electrical and Electronic Engineering (AMCEEE'17), Algiers, Algeria, April 24-27.

Ben Salem, F. & Derbel, N. 2017. DTC-SVM-Based Sliding Mode Controllers with Load Torque Estimators for Induction Motor Drives. In: Derbel, N., Ghommam, J. & Zhu, Q. (Eds.) Applications of Sliding Mode Control. Studies in Systems, Decision and Control, 79. Singapore: Springer. Available at: https://doi.org/10.1007/978-981-10-2374-3_14.

Berrabah, F., Chebabhi, A., Zeghlache, S. & Saad, S. 2017. Direct Torque Control of Induction Motor Fed by Three-level Inverter Using Fuzzy Logic. Advances in Modelling and Analysis C, 72(4), pp.248-265. Available at: https://doi.org/10.18280/ama_c.720404.

Bounar, N., Boulkroune, A., Boudjema, F., M'Saad, M. & Farza, M. 2015. Adaptive fuzzy vector control for a doubly-fed induction motor. Neurocomputing, 151(Part 2), pp.756-769. Available at: https://doi.org/10.1016/j.neucom.2014.10.026.

Cherif, D. & Yahia, M. 2020. Direct Torque Control Strategies of Induction Machine: Comparative Studies. In: Ben Salem, F. (Eds.) Direct Torque Control Strategies of Electrical Machines. London, UK: IntechOpen. Available at: https://doi.org/10.5772/intechopen.90199.

Depenbrock, M. 1987. Direct self-control (DSC) of inverter fed induktion machine. In: IEEE Power Electronics Specialists Conference, Blacksburg, VA, USA, pp.632-641, June 21-26. Available at: https://doi.org/10.1109/PESC.1987.7077236.

El Ouanjli, N., Taoussi, M., Derouich, A., Chebabhi, A., El Ghzizal, A. & Bossoufi, B. 2018. High Performance Direct Torque Control of Doubly Fed Induction Motor using Fuzzy Logic. Gazi University Journal of Science, 31(2), pp.532-542 [online]. Available at: https://dergipark.org.tr/en/pub/gujs/issue/37206/363820 [Accessed: 10 August 2023].

Henini, N., Tlemçani, A. & Barkat, S. 2021. Adaptive Interval Type-2 Fuzzy Con-troller Based Direct Torque Control of Permanent Magnet Synchronous Motor. Advances in Electrical and Computer Engineering (AECE), 21(2), pp.15-22. Available at: https://doi.org/10.4316/AECE.2021.02002.

Kamalapur, G. & Aspalli, M.S. 2023. Direct torque control and dynamic performance of induction motor using fractional order fuzzy logic controller. International Journal of Electrical and Computer Engineering (IJECE), 13(4), pp.3805~3816. Available at: https://doi.org/10.11591/ijece.v13i4.pp3805-3816.

Lakshmi Prasanna, K., Chandra Sekhar, J.N. & Marutheeaswar, G. 2018. Implementation of DTC in Induction Motor Using Anfis Pi Controller. International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), 4(4), pp.422-428 [online]. Available at: https://ijsrset.com/IJSRSET1844108.

Mokhtari, B. 2014. DTC Intelligente Appliquée à la Commande de la Machine Asynchrone. Ph.D. thesis. Batna, Algeria: University of Batna [online]. Available at: http://eprints.univ-batna2.dz/1244/ [Accessed: 10 August 2023].

Maiti, D., Biswas, S. & Konar, A. 2020. Design of a Fractional Order PID Controller Using Particle Swarm Optimization Technique. arXiv:0810.3776. Available at: https://doi.org/10.48550/arXiv.0810.3776.

Massoum, S., Meroufel, A., Massoum, A. & Patrice, W. 2021. DTC based on SVM for induction motor sensorless drive with fuzzy sliding mode speed controller. International Journal of Electrical and Computer Engineering (IJECE), 11(1), pp.171-181. Available at: https://doi.org/10.11591/ijece.v11i1.pp171-181.

Prasad, R.R. & Durgasukuamar, G. 2021. Enhanced Performance of Indirect Vector Controlled Induction Motor Drive with a Modified Type 2 Neuro-Fuzzy Torque Controller in Interfacing with dSPACE DS-2812. Journal Européen des Systèmes Automatisés, 54(2), pp.219-228. Available at: https://doi.org/10.18280/jesa.540203.

Precup, R.-E., Preitl, S., Petriu, E., Bojan-Dragos, C.-A., Szedlak-Stinean, A.-I., Roman, R.-C. & Hedrea, E.-L. 2020. Model-Based Fuzzy Control Results for Networked Control Systems. Reports in Mechanical Engineering, 1(1), pp.10-25 [online]. Available at: https://www.rme-journal.org/index.php/asd/article/view/2.

Quang, N.P. & Dittrich, J.-A. 2015. Vector Control of Three-Phase AC Machines. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-662-46915-6.

Sai Krishna, N. & Narasimha Reddy, G. 2019. Direct Torque Control of VSI Fed Induction Motor with Fuzzy Controller. Turkish Journal of Computer and Mathematics Education, 10(3), pp.914-918 [online]. Available at: https://turcomat.org/index.php/turkbilmat/article/view/11839.

Saidi, A., Naceri, F., Youb, L., Cernat, M. & Guasch Pesquer, L. 2020. Two Types of Fuzzy Logic Controllers for the Speed Control of the Doubly-Fed Induction Machine. Advances in Electrical and Computer Engineering (AECE), 20(3), pp. 65-74. Available at: https://doi.org/10.4316/AECE.2020.03008.

Sharma, R., Gaur, P. & Mittal, A.P. 2015. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Transactions, 58, pp.279-291. Available at: https://doi.org/10.1016/j.isatra.2015.03.013.

Shi, J.Z. 2020. A Fractional Order General Type-2 Fuzzy PID Controller Design Algorithm. IEEE Access, 8, pp.52151-52172. Available at: https://doi.org/10.1109/ACCESS.2020.2980686.

Shyu, K.-K., Lin, J.-K., Pham, V.-T., Yang, M.-J. & Wang, T.-W. 2010. Global Minimum Torque Ripple Design for Direct Torque Control of Induction Motor Drives. IEEE Transactions on Industrial Electronics, 57(9), pp.3148-3156. Available at: https://doi.org/10.1109/TIE.2009.2038401.

Takahashi, I. & Noguchi, T. 1986. A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor. IEEE Transactions on Industry Applications, IA-22(5), pp.820-827. Available at: https://doi.org/10.1109/TIA.1986.4504799.

Trabelsi, R., Khedher, A., Mimouni, M.F. & M’sahli, F. 2012. Backstepping control for an induction motor using an adaptive sliding rotor-flux observer. Electric Power Systems Research, 93, pp.1-15. Available at: https://doi.org/10.1016/j.epsr.2012.06.004.

Objavljeno
2023/12/04
Rubrika
Originalni naučni radovi