Application of the type-2 fuzzy logic controller and the fractional order controller to regulate the DTC speed in an induction motor

  • Younes Abdelbadie Mabrouk University Ammar Telidji, Electrotechnics Department, The laboratory for the study and development of semiconductors and dielectric materials (LEDMASD), Laghouat, People's Democratic Republic of Algeria https://orcid.org/0009-0007-5220-3685
  • Bachir Mokhtari University Ammar Telidji, Electrotechnics Department, The laboratory for the study and development of semiconductor and dielectric materials (LEDMASD), Laghouat, People's Democratic Republic of Algeria https://orcid.org/0000-0003-4643-8940
  • Tayeb Allaoui University of Tiaret, Department of Electrical Engineering, Energy Engineering and Computer Engineering Laboratory (L2GEGI), Tiaret, People's Democratic Republic of Algeria https://orcid.org/0000-0001-9295-073X
Keywords: direct torque control (DTC), fuzzy logic controller (FLC), fractional order controller (FO), induction motor (IM), FFT analysis

Abstract


Introduction/purpose: Among excellent strategies available to control the torque of asynchronous motors, we distinguish direct torque control. This technique of control allows direct control of magnetic flux and electromagnetic torque without the need to decouple them. Also, direct torque control like each control strategy has some drawbacks, the major drawbacks of this technique being operation at a variable switching frequency and flux and electromagnetic ripples due to the use of hysteresis regulators. It worsens acoustic noise, especially at low speeds, as well as the control performances.

Methods: To improve the performance of direct torque control especially at low speeds, the authors propose using fractional order PID in combination with type-2 fuzzy logic controllers to regulate the speed of an induction motor controlled by direct torque control.

Results: The results obtained by the proposed regulators show the improvements made to the system.

Conclusion: The proposed contribution can exert better control efforts.

References

Aib, A., Khodja, D.E. & Chakroune, S. 2023. Field programmable gate array hardware in the loop validation of fuzzy direct torque control for induction machine drive. Electrical Engineering & Electromechanics, 3, pp. 28-35. Available at: https://doi.org/10.20998/2074-272X.2023.3.04.

Belhamdi, S. & Amar, G. 2017. Direct Field-Oriented Control using Fuzzy Logic Type-2 for Induction Motor with Broken Rotor Bars. MSE JOURNALS-AMSE IIETA publication-2017-Series: Advances C; Vol. 72; N°4; pp 203-212 Available at: https://doi.org/10.18280/ama_c.720401.

Benbouhenni, H., Taleb, R. & Chabni, F. 2017. Commande DTC cinq niveaux à 24 secteurs d'un moteur asynchrone par méthodes intelligentes. In: 1st Algerian Multi-Conference on Computer, Electrical and Electronic Engineering (AMCEEE'17), Algiers, Algeria, April 24-27.

Ben Salem, F. & Derbel, N. 2017. DTC-SVM-Based Sliding Mode Controllers with Load Torque Estimators for Induction Motor Drives. In: Derbel, N., Ghommam, J. & Zhu, Q. (Eds.) Applications of Sliding Mode Control. Studies in Systems, Decision and Control, 79. Singapore: Springer. Available at: https://doi.org/10.1007/978-981-10-2374-3_14.

Berrabah, F., Chebabhi, A., Zeghlache, S. & Saad, S. 2017. Direct Torque Control of Induction Motor Fed by Three-level Inverter Using Fuzzy Logic. Advances in Modelling and Analysis C, 72(4), pp.248-265. Available at: https://doi.org/10.18280/ama_c.720404.

Bounar, N., Boulkroune, A., Boudjema, F., M'Saad, M. & Farza, M. 2015. Adaptive fuzzy vector control for a doubly-fed induction motor. Neurocomputing, 151(Part 2), pp.756-769. Available at: https://doi.org/10.1016/j.neucom.2014.10.026.

Cherif, D. & Yahia, M. 2020. Direct Torque Control Strategies of Induction Machine: Comparative Studies. In: Ben Salem, F. (Eds.) Direct Torque Control Strategies of Electrical Machines. London, UK: IntechOpen. Available at: https://doi.org/10.5772/intechopen.90199.

Depenbrock, M. 1987. Direct self-control (DSC) of inverter fed induktion machine. In: IEEE Power Electronics Specialists Conference, Blacksburg, VA, USA, pp.632-641, June 21-26. Available at: https://doi.org/10.1109/PESC.1987.7077236.

El Ouanjli, N., Taoussi, M., Derouich, A., Chebabhi, A., El Ghzizal, A. & Bossoufi, B. 2018. High Performance Direct Torque Control of Doubly Fed Induction Motor using Fuzzy Logic. Gazi University Journal of Science, 31(2), pp.532-542 [online]. Available at: https://dergipark.org.tr/en/pub/gujs/issue/37206/363820 [Accessed: 10 August 2023].

Henini, N., Tlemçani, A. & Barkat, S. 2021. Adaptive Interval Type-2 Fuzzy Con-troller Based Direct Torque Control of Permanent Magnet Synchronous Motor. Advances in Electrical and Computer Engineering (AECE), 21(2), pp.15-22. Available at: https://doi.org/10.4316/AECE.2021.02002.

Kamalapur, G. & Aspalli, M.S. 2023. Direct torque control and dynamic performance of induction motor using fractional order fuzzy logic controller. International Journal of Electrical and Computer Engineering (IJECE), 13(4), pp.3805~3816. Available at: https://doi.org/10.11591/ijece.v13i4.pp3805-3816.

Lakshmi Prasanna, K., Chandra Sekhar, J.N. & Marutheeaswar, G. 2018. Implementation of DTC in Induction Motor Using Anfis Pi Controller. International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), 4(4), pp.422-428 [online]. Available at: https://ijsrset.com/IJSRSET1844108.

Mokhtari, B. 2014. DTC Intelligente Appliquée à la Commande de la Machine Asynchrone. Ph.D. thesis. Batna, Algeria: University of Batna [online]. Available at: http://eprints.univ-batna2.dz/1244/ [Accessed: 10 August 2023].

Maiti, D., Biswas, S. & Konar, A. 2020. Design of a Fractional Order PID Controller Using Particle Swarm Optimization Technique. arXiv:0810.3776. Available at: https://doi.org/10.48550/arXiv.0810.3776.

Massoum, S., Meroufel, A., Massoum, A. & Patrice, W. 2021. DTC based on SVM for induction motor sensorless drive with fuzzy sliding mode speed controller. International Journal of Electrical and Computer Engineering (IJECE), 11(1), pp.171-181. Available at: https://doi.org/10.11591/ijece.v11i1.pp171-181.

Prasad, R.R. & Durgasukuamar, G. 2021. Enhanced Performance of Indirect Vector Controlled Induction Motor Drive with a Modified Type 2 Neuro-Fuzzy Torque Controller in Interfacing with dSPACE DS-2812. Journal Européen des Systèmes Automatisés, 54(2), pp.219-228. Available at: https://doi.org/10.18280/jesa.540203.

Precup, R.-E., Preitl, S., Petriu, E., Bojan-Dragos, C.-A., Szedlak-Stinean, A.-I., Roman, R.-C. & Hedrea, E.-L. 2020. Model-Based Fuzzy Control Results for Networked Control Systems. Reports in Mechanical Engineering, 1(1), pp.10-25 [online]. Available at: https://www.rme-journal.org/index.php/asd/article/view/2.

Quang, N.P. & Dittrich, J.-A. 2015. Vector Control of Three-Phase AC Machines. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-662-46915-6.

Sai Krishna, N. & Narasimha Reddy, G. 2019. Direct Torque Control of VSI Fed Induction Motor with Fuzzy Controller. Turkish Journal of Computer and Mathematics Education, 10(3), pp.914-918 [online]. Available at: https://turcomat.org/index.php/turkbilmat/article/view/11839.

Saidi, A., Naceri, F., Youb, L., Cernat, M. & Guasch Pesquer, L. 2020. Two Types of Fuzzy Logic Controllers for the Speed Control of the Doubly-Fed Induction Machine. Advances in Electrical and Computer Engineering (AECE), 20(3), pp. 65-74. Available at: https://doi.org/10.4316/AECE.2020.03008.

Sharma, R., Gaur, P. & Mittal, A.P. 2015. Performance analysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Transactions, 58, pp.279-291. Available at: https://doi.org/10.1016/j.isatra.2015.03.013.

Shi, J.Z. 2020. A Fractional Order General Type-2 Fuzzy PID Controller Design Algorithm. IEEE Access, 8, pp.52151-52172. Available at: https://doi.org/10.1109/ACCESS.2020.2980686.

Shyu, K.-K., Lin, J.-K., Pham, V.-T., Yang, M.-J. & Wang, T.-W. 2010. Global Minimum Torque Ripple Design for Direct Torque Control of Induction Motor Drives. IEEE Transactions on Industrial Electronics, 57(9), pp.3148-3156. Available at: https://doi.org/10.1109/TIE.2009.2038401.

Takahashi, I. & Noguchi, T. 1986. A New Quick-Response and High-Efficiency Control Strategy of an Induction Motor. IEEE Transactions on Industry Applications, IA-22(5), pp.820-827. Available at: https://doi.org/10.1109/TIA.1986.4504799.

Trabelsi, R., Khedher, A., Mimouni, M.F. & M’sahli, F. 2012. Backstepping control for an induction motor using an adaptive sliding rotor-flux observer. Electric Power Systems Research, 93, pp.1-15. Available at: https://doi.org/10.1016/j.epsr.2012.06.004.

Published
2023/12/04
Section
Original Scientific Papers