Eksperimentalna analiza izloženosti betona termičkim promenama

  • Sara Zatir Univerzitet Tahri Mohamed u Bešaru, Odeljenje za arhitekturu i urbanizam, Bešar, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-6187-3441
  • Nacer Rahal Univerzitet Mustafa Stamboli, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir; Univerzitet prirodnih nauka i tehnologije, Laboratorija za mašinske strukture i stabilnost konstrukcije, Oran, Narodna Demokratska Republika Alžir https://orcid.org/0009-0002-0400-8360
  • Houda Beghdad Univerzitet Mustafa Stambouli, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0009-0001-3548-5138
  • Abdelaziz Souici Univerzitet Mustafa Stamboli, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir; Univerzitet prirodnih nauka i tehnologije, Laboratorija za mašinske strukture i stabilnost konstrukcije, Oran, Narodna Demokratska Republika Alžir https://orcid.org/0009-0004-3845-7409
  • Halima Aouad Univerzitet Mustafa Stambouli, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir
  • Khaled Benmahdi Univerzitet Mustafa Stambouli, Odsek za građevinarstvo, Maskara, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-8244-5817
Ključne reči: beton, vatra, eksperimentalna analiza, gašenje, voda, prirodno strujanje vazduha

Sažetak


Uvod/cilj: Kada su delovi betonske strukture izloženi dejstvu vatre, a zatim brzom ili sporom hlađenju, dolazi do različitih promena u gustini, poroznosti, termičkom oštećenju, brzini širenja zvuka, modulusu elastičnosti, kompresivnoj snazi, apsorpciji, itd. Raširena upotreba betona u građevinarstvu, s jedne strane, i problemi nastali usled izloženosti požaru, s druge strane, zahtevaju detaljno razumevanje uticaja vatre na ponašanje strukture betona, naročito posle hlađenja. Do sada su korišćena dva metoda hlađenja za gašenje vatre – vodom i slobodnim strujanjem vazduha. U radu je eksperimentalno analizirano korišćenje protivpožarnog aparata kao trećeg načina za hlađenje betona izloženog visokim temperaturama. 

Metode: Izvršena je serija mehaničkih i fizičkih ispitivanja uzoraka, prečnika 40 mm i visine 40 mm, izloženih visokim temperaturama od 200, 400 i 600 °C. Zatim su test-epruvete podvrgnute hlađenju na tri različita načina: slobodnim strujanjem vazduha, potapanjem u vodu i korišćenjem protivpožarnog aparata.

Rezultati: Rezultati jasno pokazuju da je korišćenje protivpožarnog aparata pogodnije od preostala dva metoda hlađenja, tj. prirodnog hlađenja na vazduhu i natapanja vodom.

Zaključak: Rezultati ove eksperimentalne studije mogli bi da imaju praktičnu primenu pri gašenju eventualnog požara u nekoj betonskoj strukturi.

Reference

-ACI (American Concrete Institute). 1989. 216R-89: Guide for Determining the Fire Endurance of Concrete Elements (Reapproved 2001) [online]. Available at: https://www.concrete.org/store/productdetail.aspx?ItemID=21689&Format=DOWNLOAD&Language=English&Units=US_Units [Accessed: 05 September 2023].

-ACI (American Concrete Institute). 2007. ACI 216.1-07/TMS-216-07 Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies. An ACI/TMS Standard. Reported by Joint ACI-TMS Committee 216 [online]. Available at: https://www.concrete.org/portals/0/files/pdf/previews/216107_bkstore_view.pdf [Accessed: 05 September 2023].

-ACI (American Concrete Institute). 2008. Building Code Requirements For Reinforced Concrete and Commentary (ACI 318). Farmington Hills, Michigan, USA: American Concrete Institute.

Akçaözoğlu, K. 2013. Microstructural examination of concrete exposed to elevated temperature by using plane polarized transmitted light method. Construction and Building Materials, 48, pp.772-779. Available at: https://doi.org/10.1016/j.conbuildmat.2013.06.059.

Annerel, E. & Taerwe L. 2009. Revealing the temperature history in concrete after fire exposure by microscopic analysis. Cement and Concrete Research, 39(12), pp.1239-1249. Available at: https://doi.org/10.1016/j.cemconres.2009.08.017.

Aïtcin, P.C.C. 2003. The durability characteristics of high performance concrete: a review. Cement and Concrete Composites, 25(4-5), pp.409-420. Available at: https://doi.org/10.1016/S0958-9465(02)00081-1.

Bangi, M.R. & Horiguchi, T. 2012. Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cement and Concrete Research, 42(2), pp.459-466. Available at: https://doi.org/10.1016/j.cemconres.2011.11.014.

Bazant, Z.P. & Kaplan, M.F. 1996. Concrete at High Temperatures (Longman Concrete Design and Construction Series) (1st Edition). London, UK: Pearson. ISBN: 978-0582086265.

Bi, J., Liu, P., & Gan, F. 2020. Effects of the cooling treatment on the dynamic behavior of ordinary concrete exposed to high temperatures. Construction and Building Materials, 248, art.number:118688. Available at: https://doi.org/10.1016/j.conbuildmat.2020.118688.

Carstensen, J.V., Jomaas, G. & Pankaj, P. 2013. Element Size and Other Restrictions in Finite-Element Modeling of Reinforced Concrete at Elevated Temperatures. Journal of Engineering Mechanics, 139(10), pp.1325-1333. Available at: https://doi.org/10.1061/(ASCE)EM.1943-7889.0000578.

-CEN (The European Committee for Standardization). 1994. CEN ENV 1994-1-2:1994(MAIN) Eurocode 4: Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design [online]. Available at: https://standards.iteh.ai/catalog/standards/cen/6476197f-10f8-435d-8813-683bbdbd497e/env-1994-1-2-1994 [Accessed: 05 September 2023].

-CEN (The European Committee for Standardization). 2002. CEN EN 1991-1-2:2002(MAIN) Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire [online]. Available at: https://standards.iteh.ai/catalog/standards/cen/5bdb5478-f413-4f23-a3e2-2eba83dc303f/en-1991-1-2-2002 [Accessed: 05 September 2023].

-CEN (The European Committee for Standardization). 2004. CEN EN 1992-1-2:2004(MAIN) Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design [online]. Available at: https://standards.iteh.ai/catalog/standards/cen/597bff7e-4f49-446f-ac9b-69829a09d098/en-1992-1-2-2004 [Accessed: 05 September 2023].

Du, S., Zhang, Y., Sun, Q., Gong, W., Geng, J. & Zhang, K. 2018. Experimental study on color change and compression strength of concrete tunnel lining in a fire. Tunnelling and Underground Space Technology, 71, pp.106-114. Available at: https://doi.org/10.1016/j.tust.2017.08.025.

-European Commissions. 1992. Eurocode 2: Design of concrete structures. Eurocodes.jrc.ec.europa.eu [online]. Available at: https://eurocodes.jrc.ec.europa.eu/EN-Eurocodes/eurocode-2-design-concrete-structures [Accessed: 05 September 2023].

Ezekiel, S., Xiao, R.Y. & Chin, C.S. 2013. Constitutive Model for Compressive Strength and Elastic Modulus for Concrete under Elevated Temperature. In: Proceedings of the Structures Congress, Pittsburgh, Pennsylvania, USA, pp.2916-2925, May 2-4. Available at: https://doi.org/10.1061/9780784412848.254.

Gawin, D., Pesavento, F. & Schrefler, B.A. 2011. What physical phenomena can be neglected when modelling concrete at high temperature? A comparative study. Part 2: Comparison between models. International Journal of Solids and Structures, 48(13), pp.1945-1961. Available at: https://doi.org/10.1016/j.ijsolstr.2011.03.003.

Hammoud, R., Yahia, A. & Boukhili, R. 2014. Triaxial Compressive Strength of Concrete Subjected to High Temperatures. Journal of Materials in Civil Engineering, 26(4). Available at: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000871.

Hertz, K.D. 2005. Concrete strength for fire safety design. Magazine of Concrete Research, 57(8), pp.445-453. Available at: https://doi.org/10.1680/macr.2005.57.8.445.

Huo, J.S., He, Y.M., Xiao, L.P. & Chen, B.S. 2013. Experimental study on dynamic behaviours of concrete after exposure to high temperatures up to 700 °C. Materials and Structures, 46, pp.255-265. Available at: https://doi.org/10.1617/s11527-012-9899-x.

Ingham, J.P. 2009. Application of petrographic examination techniques to the assessment of fire-damaged concrete and masonry structures. Materials Characterization, 60(7), pp.700-709. Available at: https://doi.org/10.1016/j.matchar.2008.11.003.

Jia, B., Li, Z.L., Tao, J.L. & Zhang, C.T. 2011a. The Dynamic Mechanical Constitutive Equation of Concrete under High Temperture. AMM (Applied Mechanics and Materials), Vol.99-100, pp.782-785. Available at: https://doi.org/10.4028/www.scientific.net/amm.99-100.782.

Jia, B., Li, Z.L., Yao, H.C. & Tao, J.L. 2011b. SHPB Test on Dynamical Mechanical Behavior of Concrete with High Temperature. AMM (Applied Mechanics and Materials), Vol.71-78, pp.760-763. Available at: https://doi.org/10.4028/www.scientific.net/amm.71-78.760.

Khoury, G.A. 2000. Effect of fire on concrete and concrete structures. Progress in Structural Engineering and Materials, 2(4), pp.429-447. Available at: https://doi.org/10.1002/pse.51.

Khoury, G.A., Anderberg, Y., Both, K., Fellinger, J., Høj, N.P. & Majorana, C. 2007. Fire design of concrete structures - materials, structures and modelling. fib Bulletin, 38. Available at: https://doi.org/10.35789/fib.BULL.0038.

Kodur, V. 2014. Properties of Concrete at Elevated Temperatures. International Scholarly Research Notices, art.ID:468510. Available at: https://doi.org/10.1155/2014/468510.

Li, Z., Xu, J. & Bai, E. 2012. Static and dynamic mechanical properties of concrete after high temperature exposure. Materials Science and Engineering: A, 544, pp.27-32. Available at: https://doi.org/10.1016/j.msea.2012.02.058.

Liu, P., Zhou, X., Qian, Q., Berto, F. & Zhou, L. 2019. Dynamic splitting tensile properties of concrete and cement mortar. Fatigue and Fracture of Engineering Materials & Structures, 43(4), pp.757-770. Available at: https://doi.org/10.1111/ffe.13162.

Lu, Xia., Lu, Xin., Guan, H. & Ye, L. 2013. Collapse simulation of reinforced concrete highrise building induced by extreme earthquakes. Earthquake Engineering Structural Dynamics, 42(5), pp.705-723. Available at: https://doi.org/10.1002/eqe.2240.

Ma, Q., Guo, R., Zhao, Z., Lin, Z. & He, K. 2015. Mechanical properties of concrete at high temperature – A review. Construction and Building Materials, 93, pp.371-383. Available at: https://doi.org/10.1016/j.conbuildmat.2015.05.131.

Noumowe, A. 2005. Mechanical properties and microstructure of high strength concrete containing polypropylene fibers exposed to temperatures up to 200 °C. Cement and Concrete Research, 35(11), pp.2192-2198. Available at: https://doi.org/10.1016/j.cemconres.2005.03.007.

Phan, L.T. & Carino, N.J. 2000. Fire Performance of High Strength Concrete: Research Needs. In: Proceedings of Structures Congress, Philadelphia, Pennsylvania, USA, pp.1-8, May 8-10 Available at: https://doi.org/10.1061/40492(2000)181.

Pihlajavaara, S E. & Kesler, C.E. 1972. Analysis of the factors exerting effect on strength and other properties of concrete at elevated temperatures. In: International seminar on concrete for nuclear reactors, Berlin, F.R. Germany, October 5 [online]. Available at: https://www.osti.gov/biblio/4489011 [Accessed: 05 September 2023].

Shi, J-s., Xu, J-y., Ren, W-b. & Su, H-y. 2014. Research on Energy Dissipation and Fractal Characteristics of Concrete after Exposure to Elevated Temperatures underImpact Loading. Acta Armamentarii, 35(5), pp.703-710 [online]. Available at: http://www.co-journal.com/EN/abstract/abstract1191.shtml [Accessed: 05 September 2023].

Su, H., Xu, J. & Ren, W. 2014. Experimental study on the dynamic compressive mechanical properties of concrete at elevated temperature. Materials & Design (1980-2015), 56, pp.579-588. Available at: https://doi.org/10.1016/j.matdes.2013.11.024.

Tanaçan, L., Ersoy, H.Y. & Arpacıoğlu, Ü. 2009. Effect of high temperature and cooling conditions on aerated concrete properties. Construction and Building Materials, 23(3), pp.1240-1248. Available at: https://doi.org/10.1016/j.conbuildmat.2008.08.007.

Tao, J.-l., Qin, L.-b., Li, K., Liu, D., Jia, B., Chen, X.-w. & Chen, G. 2011. Experimental investigation on dynamic compression mechanical performance of concrete at high temperature. Explosion and Shock Waves, 1, pp.101-106 [online]. Available at: https://caod.oriprobe.com/articles/26396575/Experimental_investigation_on_dynamic_compression_mechanical_performan.htm [Accessed: 05 September 2023].

Tenchev, R. & Purnell, P. 2005. An application of a damage constitutive model to concrete at high temperature and prediction of spalling. International Journal of Solids and Structures, 42(26), pp.6550-6565. Available at: https://doi.org/10.1016/j.ijsolstr.2005.06.016.

Tomar, M.S. & Khurana, S. 2019. Impact of passive fire protection on heat release rates in road tunnel fire: A revie. Tunnelling and Underground Space Technology, 85, pp.149-159. Available at: https://doi.org/10.1016/j.tust.2018.12.018.

Van der Heijden, G.H.A., Van Bijnen, R.M.W., Pel, L. & Huinink, H.P. 2007. Moisture transport in heated concrete, as studied by NMR, and its consequences for fire spalling. Cement and Concrete Research, 37(6), pp.894-901. Available at: https://doi.org/10.1016/j.cemconres.2007.03.004.

Wang, Y.-t. 2014. Static and dynamic mechanical properties of concrete after high temperature treatment. Journal of Vibration and Shock, 01 January [online]. Available at: https://typeset.io/papers/static-and-dynamic-mechanical-properties-of-concrete-after-3l0vqs3cx6?citations_has_pdf=true [Accessed: 05 September 2023].

Wang, T.-T. & Shang, B. 2014. Three-Wave Mutual-Checking Method for Data Processing of SHPB Experiments of Concrete. Journal of Mechanics, 30(5), pp.5-10. Available at: https://doi.org/10.1017/jmech.2014.55.

Zhai, Y., Li, Ya., Li, Yu., Wang, S., Liu, Y. & Song, K.-I. 2019. Impact of high-temperature-water cooling damage on the mechanical properties of concrete. Construction and Building Materials, 215, pp.233-243. Available at: https://doi.org/10.1016/j.conbuildmat.2019.04.161.

Zhai, Yu., Deng, Z., Li, N. & Xu, R. 2014. Study on compressive mechanical capabilities of concrete after high temperature exposure and thermo-damage constitutive model. Construction and Building Materials, 68, pp.777-782. Available at: https://doi.org/10.1016/j.conbuildmat.2014.06.052.

Zhang, H., Gao, Y.W., Li, F., Lu, F. & Sun, H. 2013. Experimental study on dynamic properties and constitutive model of poly propylene fibre concrete under highstrain rates. European journal of environmental and civil engineering, 17(suppl.1), pp.294-303. Available at: https://doi.org/10.1080/19648189.2013.834601.

Zhao, Y., Bi, J., Zhou, X. & Huang, Y. 2019. Effect of High Temperature and High Pressure of Water on Micro-Characteristic and Splitting Tensile Strength of Gritstone. Frontiers in Earth Science, 7, 13 November. Available at: https://doi.org/10.3389/feart.2019.00301.

Objavljeno
2023/12/04
Rubrika
Originalni naučni radovi