Hibridni pristup odlučivanju sa fazi i grubim skupovima zasnovan na lingvističkim podacima radi analiziranja obrazaca glasanja

Ključne reči: lingvistički termin, grubi skup, fazi skup, trofaktorska odluka, ponašanje glasača

Sažetak


Uvod/cilj: Proučavanje ponašanja glasača je značajno jer omogućava merenje kontinuiteta izborne politike kao i odstupanja određene politike od istorijskih trendova. Ono objašnjava stvarni uticaj transformativne biračke kutije  i doprinosi ispitivanju demokratije kao vrednosti i među masama i među elitama. Pored toga, doprinosi razumevanju složenog procesa političke socijalizacije.

Metode: Snaga grubih skupova leži u njihovom oslanjanju isključivo na sirove podatke, bez ikakvih spoljašnjih uticaja. Okvir grubih skupova za teorijsko odlučivanje, kao evolucija grubog skupa, obezbedio je široku primenu u različitim oblastima kao uspešna alatka za sticanje znanja, naročito u situacijama u kojima je prisutna neodređenost i nesigurnost. Uprkos velikom broju matematičkih modela projektovanih da utvrđuju ponašanje glasača, u literaturi nema preporuke da se koriste grubi skupovi zasnovani na odlučivanju. Ovaj rad uvodi inovativni trofaktorski pristup odlučivanju zasnovan na lingvističkim podacima radi identifikovanja ponašanja glasača. Predloženi pristup zasniva se na hibridnom probabilističkom modelu grubih i faznih skupova koji uključuje lingvističke podatke i obezbeđuje uvid u obrasce glasanja.

Rezultati: Trofaktorski hibridni modeli odlučivanja testirani su na glasačima. U identifikaciji njihovog ponašanja pri glasanju dobijeni su veoma zadovoljavajući rezultati. koji su validirani putem matematičkog procesa.

Zaključak: Primer iz prakse ističe značaj ovog hibridnog modela i potvrđuje njegovu korisnost za identifikaciju i predviđanje ponašanja glasača.

Reference

Bukari, Z., Abdul Hamid, A.B., Md. Som, H., Agbemabiese, G.C. & Quansah, F. 2022. Does political issue matter in voting intention in Ghana? A political marketing perspective. Cogent Business & Management, 9(1), art.number: 2034227. Available at: https://doi.org/10.1080/23311975.2022.2034227.

Chakraborty, M.K. 2011. On Fuzzy Sets and Rough Sets from the Perspective of Indiscernibility. In: Banerjee, M. & Seth, A. (Eds.) Logic and Its Applications. ICLA 2011. Lecture Notes in Computer Science, 6521. Heidelberg: Springer, Berlin. Available at: https://doi.org/10.1007/978-3-642-18026-2_4.

Deng, X. & Yao, Y. 2014. Decision-theoretic three-way approximations of fuzzy sets. Information Sciences, 279, pp.702-715. Available at: https://doi.org/10.1016/j.ins.2014.04.022.

Donbosco, J.S.M & Ganesan, D. 2022. The Energy of rough neutrosophic matrix and its application to MCDM problem for selecting the best building construction site. Decision Making: Applications in Management and Engineering, 5(2), pp.30-45. Available at: https://doi.org/10.31181/dmame0305102022d.

Dubois, D. & Prade, H. 1982. A CLASS OF FUZZY MEASURES BASED ON TRIANGULAR NORMS A general framework for the combination of uncertain information. International Journal of General System, 8(1), pp.43-61. Available at: https://doi.org/10.1080/03081078208934833.

Dubois, D. & Prade, H. 1990. Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems, 17(2-3), pp.191-209. Available at: https://doi.org/10.1080/03081079008935107.

Greco, S., Matarazzo, B. & Słowiński, R. 2008. Parameterized rough set model using rough membership and Bayesian confirmation measures. International Journal of Approximate Reasoning, 49(2), pp.285-300. Available at: https://doi.org/10.1016/j.ijar.2007.05.018.

Gurmani, S.H., Chen, H. & Bai, Y. 2023. Multi-attribute group decision-making model for selecting the most suitable construction company using the linguistic interval valued T-spherical 150 fuzzy TOPSIS method. Applied Intelligence, 53, pp.11768-11785. Available at: https://doi.org/10.1007/s10489-022-04103-0.

Hu, B.Q. 2014. Three-way decisions space and three way decisions. Information Sciences, 281, pp.21-52. Available at: https://doi.org/10.1016/j.ins.2014.05.015.

Karni, E. 2009. A theory of medical decision making under uncertainty. Journal of Risk and Uncertainty, 39, pp.1-16. Available at: https://doi.org/10.1007/s11166-009-9071-3.

Klement, E.P. & Schwyhla, W. 1982. Correspondence between fuzzy measures and classical measures. Fuzzy Sets and Systems, 7(1), pp.57-70. Available at: https://doi.org/10.1016/0165-0114(82)90040-9.

Klir, G.J. 1994. Multivalued logics versus modal logics: alternative frameworks for uncertainty modelling. In: Wang, P.P. (Ed.) Advances in Fuzzy Theory and Technology. Durham, North Carolina, USA: Duke University, Department of Electrical Engineering. ISBN: 978-0964345614.

Klir, G.J. & Yaun, B. 1995. FUZZY SETS AND FUZZY LOGIC: Theory and application. Upper Saddle River, NJ, USA: Prentice Hall PTR. ISBN: 0-13-101171-5.

Konlan, B. 2017. Predictability of Identity Voting Behaviour, Perceived Exclusion and Neglect and the Paradox of Loyalty: A Case Study of a Conflict Involving the Ewe Group in the Volta Region of Ghana and the NDC-led Administrations. PhD thesis. Ann Arbor, MI, USA: ProQuest LLC & Nova Southeastern University, College of Arts, Humanities, and Social Sciences [online]. Available at: https://www.proquest.com/openview/060098f4656dfc5bc2e04c1edf71d5a3/1?pq-origsite=gscholar&cbl=18750 [Accessed: 10 January 2024].

Lees‐Marshment, J. 2019. Marketing Scholars and Political Marketing: the Pragmatic and Principled Reasons for Why Marketing Academics Should Research the Use of Marketing in the Political Arena. Customer Needs and Solutions, 6, pp.41-48. Available at: https://doi.org/10.1007/s40547-019-0091-0.

Mazandarani, M., Pariz, N. & Kamyad, A.V. 2018. Granular Differentiability of Fuzzy-Number-Valued Functions. IEEE Transactions on Fuzzy Systems, 26(1), pp.310-323. Available at: https://doi.org/10.1109/TFUZZ.2017.2659731.

Narang, M., Kumar, A. & Dhawan, R. 2023. A fuzzy extension of MEREC method using parabolic measure and its applications. Journal of Decision Analytics and Intelligent Computing, 3(1), pp.33-46. Available at: https://doi.org/10.31181/jdaic10020042023n.

Pal, S.S. & Kar, S. 2019. Time series forecasting for stock market prediction through data discretization by fuzzistics and rule generation by rough set theory. Mathematics and Computers in Simulation, 162, pp.18-30. Available at: https://doi.org/10.1016/j.matcom.2019.01.001.

Pauker, S.G. & Kassirer, J.P. 1980. The Threshold Approach to Clinical Decision Making. New England Journal of Medicine, 302(20), pp.1109-1117. Available at: https://doi.org/10.1056/NEJM198005153022003.

Pawlak, Z. 1982. Rough Sets. International Journal of Computer & Information Sciences, 11, pp.341-356. Available at: https://doi.org/10.1007/BF01001956.

Pawlak, Z. 1985. Rough sets and fuzzy sets. Fuzzy Sets and Systems, 17(1), pp.99-102. Available at: https://doi.org/10.1016/S0165-0114(85)80029-4.

Saqlain, M. & Saeed, M. 2024. From Ambiguity to Clarity: Unraveling the Power of Similarity Measures in Multi-Polar Interval-Valued Intuitionistic Fuzzy Soft Sets. Decision Making Advances, 2(1), pp.48-59. Available at: https://doi.org/10.31181/dma21202421.

Sharma, H.K., Kumari, K. & Kar, S. 2018. Air passengers forecasting for Australian airline based on hybrid rough set approach. Journal of Applied Mathematics, Statistics and Informatics, 14(1), pp.5-18. Available at: https://doi.org/10.2478/jamsi-2018-0001.

Sharma, H.K., Singh, A., Yadav, D. & Kar, S. 2022. Criteria selection and decision making of hotels using Dominance Based Rough Set Theory. Operational Research in Engineering Sciences: Theory and Applications, 5(1), pp.41-55 [online]. Available at: https://oresta.org/menu-script/index.php/oresta/article/view/151 [Accessed: 10 January 2024].

Sugeno, M. 1985. An introductory survey of fuzzy control. Information Science, 36(1-2), pp.59-83. Available at: https://doi.org/10.1016/0020-0255(85)90026-X.

Tufail, F., Shabir, M. & Abo-Tabl, E.-S.A. 2022. A Comparison of Promethee and TOPSIS Techniques Based on Bipolar Soft Covering-Based Rough Sets. IEEE Access, 10, pp.37586-37602. Available at: https://doi.org/10.1109/ACCESS.2022.3161470.

Wong, S.K.M & Ziarko, W. 1987. Comparison of the probabilistic approximate classification and the fuzzy set model. Fuzzy Sets and Systems, 21(3), pp.357-362. Available at: https://doi.org/10.1016/0165-0114(87)90135-7.

Wu, Z. & Xu, J. 2016. Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations. Omega, 65, pp.28-40. Available at: https://doi.org/10.1016/j.omega.2015.12.005.

Xu, Z. 2005. Deviation measures of linguistic preference relations in group decision making. Omega, 33(3), pp.249-254. Available at: https://doi.org/10.1016/j.omega.2004.04.008.

Yang, B. 2022. Fuzzy covering-based rough set on two different universes and its application. Artificial Intelligence Review, 55, pp.4717-4753. Available at: https://doi.org/10.1007/s10462-021-10115-y.

Yang, X. & Yao, J.T. 2012. Modelling Multi-agent Three-way Decisions with Decision-theoretic Rough Sets. Fundamenta Informaticae, 115(2-3), pp.157-171. Available at: https://doi.org/10.3233/FI-2012-647.

Yao, Y.Y. 1997. Combination of rough and fuzzy sets based on α-level sets. In: Lin, T.Y. & Cercone, N. (Eds.) Rough Sets and Data Mining: Analysis for Imprecise Data. Boston, MA, USA: Springer, pp.301-321. Available at: https://doi.org/10.1007/978-1-4613-1461-5_15.

Yao, Y. & Deng, X. 2014. Quantitative rough sets based on subsethood measures. Information Sciences, 267, pp.306-322. Available at: https://doi.org/10.1016/j.ins.2014.01.039.

Yao, Y.Y. & Wong, S.K.M. 1992. A decision-theoretic framework for approximating concepts. International Journal of Man-Machine Studies, 37(6), pp.793-809. Available at: https://doi.org/10.1016/0020-7373(92)90069-W.

Zadeh, L.A. 1965. Fuzzy sets. Information and Control, 8(3), pp.338-353. Available at: https://doi.org/10.1016/S0019-9958(65)90241-X.

Zhan, J. & Sun, B. 2019. Covering-based soft fuzzy rough theory and its application to multiple criteria decision making. Computational and Applied Mathematics, 38, art.number:149. Available at: https://doi.org/10.1007/s40314-019-0931-4.

Zhan, J. & Wang, Q. 2019. Certain types of soft coverings based rough sets with applications. International Journal of Machine Learning and Cybernetics, 10(5), pp.1065-1076. Available at: https://doi.org/10.1007/s13042-018-0785-x.

Objavljeno
2024/06/10
Rubrika
Originalni naučni radovi