Rezultati nepomične tačke u kontrolisanim revidiranim fazi metričkim prostorima primenjeni na pretvaranje solarne energije u električnu

Ključne reči: teoreme nepokretne tačke, prerađeni fazi metrički prostor (RFMS), principi kontrakcije (CP), Grinova funkcija, diferencijalna jednačina

Sažetak


Uvod/cilj: U studiji se uspostavljaju dovoljni uslovi da sekvenca bude Košijeva u okviru kontrolisanih revidiranih fazi metričkih prostora. Takođe, generalizuje se koncept Banahovog principa kontrakcije uvođenjem nekoliko novih uslova kontrakcije. Cilj je da se izvedu različiti rezultati nepomične tačke koji dovode do boljeg razumevanja ove matematičke strukture.

Metode: Autori razvijaju svoja otkrića korišćenjem rigoroznih matematičkih tehnika. Definisanjem skupa novih preslikavanja kontrakcija i korišćenjem svojstva kontrolisanih revidiranih fazi metričkih prostora analiziranesu implikacije za konvergenciju sekvence. Metodologija uključuje konstruisanje konkretnih primera za ilustraciju teorijskih rezultata. 

Rezultati: Studija predstavlja nekoliko teorema nepomične tačke izvedenih iz generalizovanih uslova kontrakcije. Pored toga, navodi brojne netrivijalne primere koji potkrepljuju tvrdnje i demonstriraju primenljivost rezultata u praktičnim scenarijima. Prikazana je važna primena u oblasti pretvaranja solarne energije u električnu energiju pomoću diferencijalne jednačine.

Zaključak: Nalazi produbljuju razumevanje Košijevih sekvenci u fazi metričkim prostorima i nude širu perspektivu primene teorije nepokretne tačke u scenarijima iz realnog života. Rezultati otvaraju put za dalja istraživanja, kako u teorijskoj matematici, tako i u njenim praktičnim primenama, posebno u oblasti obnovljive energije.

Reference

Adabitabar Firozja, A. & Firouzian, S. 2015. Definition of fuzzy metric space with t-conorm. Annals of Fuzzy Mathematics and Informatics, 10(4), pp.649-655 [online]. Available at: http://www.afmi.or.kr [Accessed: 02 February 2024].

Al-Khaleel, M., Al-Sharif, S. & AlAhmad, R. 2023. On Cyclic Contractive Mappings of Kannan and Chatterjea Type in Generalized Metric Spaces. Mathematics, 11(4), art.number:890. Available at: https://doi.org/10.3390/math11040890.

Branga, A.N. & Olaru, I.M. 2022. Generalized Contractions and Fixed Point Results in Spaces with Altering Metrics. Mathematics, 10(21), art.number:4083. Available at: https://doi.org/10.3390/math10214083.

Czerwik, S. 1993. Contraction mappings in b-metricspaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1(1), pp.5-11 [online]. Available at: https://dml.cz/handle/10338.dmlcz/120469 [Accessed: 02 February 2024].

George, A. & Veeramani, P. 1994. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), pp.395-399. Available at: https://doi.org/10.1016/0165-0114(94)90162-7.

Gregori, V. & Miñana, J.-J. 2021. A Banach contraction principle in fuzzy metric spaces defined by means of t-conorms. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 115, art.number:129. Available at: https://doi.org/10.1007/s13398-021-01068-6.

Grigorenko, O., Miñana, J.J., Šostak, A. & Valero, O. 2020. On t-Conorm Based Fuzzy (Pseudo)metrics. Axioms, 9(3), art.number:78. Available at: https://doi.org/10.3390/axioms9030078.

Hadžić, O. 1979. A fixed point theorem in Menger spaces. Publications De L’institute Mathématique, Nouvelle serie, 20(40), pp.107-112 [online]. Available at: http://elib.mi.sanu.ac.rs/files/journals/publ/46/17.pdf [Accessed: 02 February 2024].

Hadžić, O. & Pap, E. 2001. Probabilistic metric spaces. In: Fixed Point Theory in Probabilistic Metric Spaces. Mathematics and Its Applications, 536, pp.47-94. Dordrecht: Springer. Available at: https://doi.org/10.1007/978-94-017-1560-7_2.

Hassanzadeh, Z. & Sedghi, S. 2018. Relation betweenb-metric and fuzzy metric spaces. Mathematica Moravica, 22(1), pp.55-63. Available at: https://doi.org/10.5937/MatMor1801055H.

Heilpern, S. 1981. Fuzzy mappings and fixed point theorem. Journal of Mathematical Analysis and Applications, 81(2), pp.566-569. Available at: https://doi.org/10.1016/0022-247X(81)90141-4.

Hussain, A., Ishtiaq, U., Ahmed, K. & Al-Sulami, H. 2022. On Pentagonal Controlled Fuzzy Metric Spaces with an Application to Dynamic Market Equilibrium. Journal of Function Spaces, 2022(1), art.number: 5301293. Available at: https://doi.org/10.1155/2022/5301293.

Ishtiaq, U., Kattan, D.A., Ahmad, K., Sessa, S. & Ali, F. 2023. Fixed Point Results in Controlled Fuzzy Metric Spaces with an Application to the Transformation of Solar Energy to Electric Power. Mathematics, 11(15), art.number:3435. Available at: https://doi.org/10.3390/math11153435.

Ishtiaq, U., Saleem, N., Uddin, F., Sessa, S., Ahmad, K. & di Martino, F. 2022. Graphical Views of Intuitionistic Fuzzy Double-Controlled Metric-Like Spaces and Certain Fixed-Point Results with Application. Symmetry, 14(11), art.number:2364. Available at: https://doi.org/10.3390/sym14112364.

Kaleva, O. & Seikkala, S. 1984. On fuzzy metric spaces. Fuzzy Sets and Systems, 12(3), pp.215-229. Available at: https://doi.org/10.1016/0165-0114(84)90069-1.

Kider, J.R. 2020. Some Properties of Algebra Fuzzy Metric Space. Journal of Al-Qadisiyah for Computer Science and Mathematics, 12(2), pp.43-56. Available at: https://doi.org/10.29304/jqcm.2020.12.2.695.

Kider, J.R. 2021. Application of Fixed Point in Algebra Fuzzy Normed Spaces. Journal of Physics: Conference Series, 1879, art.number:022099. Available at: https://doi.org/10.1088/1742-6596/1879/2/022099.

Klement, E.P., Mesiar, R. & Pap, E. 2004. Problems on triangular norms and related operators. Fuzzy Sets and Systems, 145(3), pp.471-479. Available at: https://doi.org/10.1016/S0165-0114(03)00303-8.

Kramosil, I. & Michálek, J. 1975. Fuzzy metrics and statistical metric spaces. Kybernetika, 11(5), pp.336-344 [online] . Available at: https://www.kybernetika.cz/content/1975/5/336 [Accessed: 19 January 2024].

Li, S.-F., He, F. & Lu, S.-M. 2022. Kaleva-Seikkala’sType Fuzzy b-Metric Spaces and Several Contraction Mappings. Journal of Function Spaces, 2022(1), art.number: 2714912. Available at: https://doi.org/10.1155/2022/2714912.

Mlaiki, N., Aydi, H., Souayah, N. & Abdeljawad, T. 2018. Controlled Metric Type Spaces and the Related Contraction Principle. Mathematics, 6(10), art.number:194. Available at: https://doi.org/10.3390/math6100194.

Moussaoui, A., Hussain, N., Melliani, S., Nasr, H. & Imdad, M. 2022. Fixed point results via extended FZ-simulation functions in fuzzy metric spaces. Journal of Inequalities and Applications, art.number:69. Available at: https://doi.org/10.1186/s13660-022-02806-z.

Muraliraj, A. & Thangathamizh, R. 2021a. Fixed point theorems in revised fuzzy metric space. Advances in Fuzzy Sets and Systems, 26(2), pp.103-115. Available at: https://doi.org/10.17654/FS026020103.

Muraliraj, A. & Thangathamizh, R. 2021b. Introduction on Revised fuzzy modular spaces. Global Journal of Pure and Applied Mathematics, 17(2), pp.303-317. Available at: https://doi.org/10.37622/GJPAM/17.2.2021.303-317.

Muraliraj, A. & Thangathamizh, R. 2022. Relation-Theoretic Revised Fuzzy Banach Contraction Principle and Revised Fuzzy Eldestein Contraction Theorem. JMSCM Journal of Mathematical Sciences & Computational Mathematics, 3(2), pp.197-207. Available at: https://doi.org/10.15864/jmscm.3205.

Muraliraj, A. & Thangathamizh, R. 2023. Some topological properties of revised fuzzy cone metric spaces. Ratio Mathematica, 47, pp.42-51. Available at: https://doi.org/10.23755/rm.v47i0.734.

Muraliraj, A., Thangathamizh, R., Popovic, N., Savic, A. & Radenovic, S. 2023. The First Rational Type Revisd Fuzzy-Contractions in Revisd Fuzzy Metric Spaces with an Applications. Mathematics, 11(10), art.number:2244. Available at: Available at: https://doi.org/10.3390/math11102244.

Rakić, D., Mukheimer, A., Došenović, T., Mitrović, Z. & Radenović, S. 2020. On some new fixed point results in fuzzy b-metric spaces”. Journal of Inequalities and Applications, art.number:99. Available at: https://doi.org/10.1186/s13660-020-02371-3.

Sedghi, S. & Shobe, N. 2012. Common fixed point theorem in b-fuzzy metric space. Nonlinear Functional Analysis and Applications (NFAA), 17(3), pp.349-359 [online]. Available at: http://nfaa.kyungnam.ac.kr/journal-nfaa/index.php/NFAA/article/view/38 [Accessed: 02 February 2024].

Sedghi, S. & Shobkolaei, N. 2014. Common fixed point theorem for R-weakly commuting maps in b-fuzzy metric spaces. Nonlinear Functional Analysis and Applications (NFAA), 19(2) pp.285-295 [online]. Available at: http://nfaa.kyungnam.ac.kr/journal-nfaa/index.php/NFAA/article/view/238 [Accessed: 02 February 2024].

Sezen, M.S. 2021. Controlled fuzzy metric spaces and some related fixed point results. Numerical Methods for Partial Differential Equations, 37(1), pp.583-593. Available at: https://doi.org/10.1002/num.22541.

Schweizer, B. & Sklar, A. 1960. Statistical metric spaces. Pacific Journal of Mathematics, 10(1), pp.313-334. Available at: https://doi.org/10.2140/pjm.1960.10.313.

Šostak, A. 2018. George-Veeramani Fuzzy Metrics Revised. Axioms, 7(3), art.numner:60. Available at: https://doi.org/10.3390/axioms7030060.

Thangathamizh, R., Muraliraj, A. & Shanmugavel, P. 2024. New approach of Lebesgue integral in revised fuzzy cone metric spaces via unique coupled fixed point theorems. Vojnotehnički glasnik/Military Technical Courier, 72(3), pp.1029-1045. Available at: https://doi.org/10.5937/vojtehg72-48816.

Younis, M., Singh, D. & Abdou, A.A.N. 2022. A fixed point approach for tuning circuit problem in dislocated b-metric spaces. Mathematical Methods in the Applied Science, 45(4), pp.2234-2253. Available at: https://doi.org/10.1002/mma.7922.

Zadeh, L.A. 1965. Fuzzy Sets. Information and Control, 8(3), pp.338-353. Available at: https://doi.org/10.1016/S0019-9958(65)90241-X.

Objavljeno
2024/11/17
Rubrika
Originalni naučni radovi