KG-Somborski indeks

Ključne reči: KG-Somborski indeks, stablo, uniciklični graf, stablo molekula

Sažetak


Uvod/cilj: Na stepenima zasnovane grafovske invarijante tip su molekularnih deskriptora koji predstavljaju povezanost atoma (čvorova) u molekulu putem veza (grana). Koriste se za modelovanje strukturnih svojstava molekula i pružaju dragocene informacije u oblastima poput fizičke hemije, farmakologije, nauke o životnoj sredini, kao i nauke o materijalima. Iz geometrijske perspektive nedavno su proučavani novi deskriptori molekularne strukture na bazi stepena, poznati kao grafovske invarijante srodne Somborskom indeksu. Ove grafovske invarijante našle su primenu u nauci o mrežama gde se koriste za modelovanje dinamičkih uticaja u biološkim, društvenim i složenim tehnološkim sistemima. Takođe, postoji i interesovanje za potencijalne primene u vojsci. Među ovim deskriptorima nalazi se KG-Somborski indeks koji se definiše korišćenjem stepenova i čvorova i grana. 

Metode: U istraživanju se koristi kombinatorna teorija grafova za identifikaciju i analizu ekstremalnih grafova koji ili maksimizuju ili minimizuju KG-Somborski indeks.

Rezultati: Ekstremalni grafovi se karakterišu u odnosu na KG-Somborski indeks, sa posebnim osvrtom na stabla, molekularna stabla i uniciklične grafove.

Zaključak: Ovim istraživanjem unapređuje se teorijsko razumevanje grafovskih invarijanti srodnih Somborskom indeksu.

 

Reference

Cruz, R., Gutman, I. & Rada, J. 2021. Sombor index of chemical graphs. Applied Mathematics and Computation, 399, art.number:126018. Available at: https://doi.org/10.1016/j.amc.2021.126018.

Cruz, R. & Rada, J. 2021. Extremal values of the Sombor index in unicyclic and bicyclic graphs. Journal of Mathematical Chemistry, 59, pp.1098-1116. Available at: https://doi.org/10.1007/s10910-021-01232-8.

Damnjanović, I., Milošević, M. & Stevanović, D. 2023. A Note on Extremal Sombor Indices of Trees with a Given Degree Sequence. MATCH Communications in Mathematical and in Computer Chemistry, 90(1), pp.197-202. Available at: https://doi.org/10.46793/match.90-1.197D.

Das, K.C., Cevik, A.S., Cangul, I.N. & Shang, Y. 2021. On Sombor Index. Symmetry, 13(1), art.number:140. Available at: https://doi.org/10.3390/sym13010140.

Dorjsembe, Sh. & Horoldagva, B. 2022. Reduced Sombor index of bicyclic graphs. Asian-European Journal of Mathematics, 15(07), art.number:2250128. Available at: https://doi.org/10.1142/S1793557122501285.

Gutman, I. 2021. Geometric Approach to Degree–Based Topological Indices: Sombor Indices. MATCH Communications in Mathematical and in Computer Chemistry, 86(1), pp.11-16 [online]. Available at: https://match.pmf.kg.ac.rs/electronic_versions/Match86/n1/match86n1_11-16.pdf [Accessed: 14 March 2024].

Gutman, I. 2022. Sombor indices - back to geometry. Open Journal of Discrete Applied Mathematics, 5(2), pp.1-5. Available at: https://doi.org/10.30538/psrp-odam2022.0072.

Gutman, I. 2024. Relating Sombor and Euler indices. Vojnotehnički glasnik/Military Technical Courier, 72(1), pp.1-12. Available at: https://doi.org/10.5937/vojtehg72-48818.

Gutman, I. & Das, K.Ch. 2004. The first Zagreb index 30 years after. MATCH Communications in Mathematical and in Computer Chemistry, 50, pp.83-92 [online]. Available at: https://match.pmf.kg.ac.rs/electronic_versions/Match50/match50_83-92.pdf [Accessed: 14 March 2024].

Horoldagva, B., Selenge, T.-A., Buyantogtokh, L. & Dorjsembe, Sh. 2021. Upper bounds for the reduced second Zagreb index of graphs. Transactions on Combinatorics, 10(3), pp.137-148. Available at: https://doi.org/10.22108/toc.2020.125478.1774.

Horoldagva, B. & Xu, C. 2021. On Sombor index of graphs. MATCH Communications in Mathematical and in Computer Chemistry, 86(3), pp.703-713 [online]. Available at: https://match.pmf.kg.ac.rs/electronic_versions/Match86/n3/match86n3_703-713.pdf [Accessed: 14 March 2024].

Kosari, S., Dehgardi, N. & Khan, A. 2023. Lower bound on the KG-Sombor index. Communications in Combinatorics and Optimization, 8(4), pp.751-757. Available at: https://doi.org/10.22049/cco.2023.28666.1662.

Kulli, V.R., Harish, N., Chaluvaraju, B. & Gutman, I. 2022. Mathematical properties of KG-Sombor index. Bulletin of International Mathematical Virtual Institute, 12(2), pp.379-386 [online]. Available at: http://www.imvibl.org/buletin/bulletin_imvi_12_2_22/bulletin_imvi_12_2_22_379_386.pdf [Accessed: 14 March 2024].

Liu, H., Gutman, I., You, H. & Huang, Y. 2022. Sombor index: review of extremal results and bounds. Journal of Mathematical Chemistry, 60, pp.771-798. Available at: https://doi.org/10.1007/s10910-022-01333-y.

Rada, J., Rodríguez, J.M. & Sigarreta, J.M. 2021. General properties on Sombor indices. Discrete Applied Mathematics, 299, pp.87-97. Available at: https://doi.org/10.1016/j.dam.2021.04.014.

Selenge, T.-A. & Horoldagva, B. 2024. Extremal Kragujevac trees with respect to Sombor indices. Communications in Combinatorics and Optimization, 9(1), pp.177-183. Available at: https://doi.org/10.22049/cco.2023.28058.1430.

Selenge, T.-A. & Horoldagva, B. 2015. Maximum Zagreb indices in the class of k-apex trees. Korean Journal of Mathematics, 23(3), pp.401-408. Available at: https://doi.org/10.11568/kjm.2015.23.3.401.

Tang, Z., Li, Q. & Deng, H. 2023. Trees with Extremal Values of the Sombor–Index–Like Graph Invariants. MATCH Communications in Mathematical and in Computer Chemistry, 90(1), pp.203-222. Available at: https://doi.org/10.46793/match.90-1.203T.

Zhang, H. & Zhang, S. 2006. Uncyclic graphs with the first three smallest and largest first general Zagreb index. MATCH Communications in Mathematical and in Computer Chemistry, 55(2), pp.427-438 [online]. Available at: https://match.pmf.kg.ac.rs/electronic_versions/Match55/n2/match55n2_427-438.pdf [Accessed: 14 March 2024].

Objavljeno
2024/11/17
Rubrika
Originalni naučni radovi