Projektovanje kretanja besposadnog guseničnog vozila po zadatoj putanji na osnovu ADRC regulatora i FIL simulacija

Ključne reči: besposadno gusenično vozilo, praćenje putanje, upravljanje sa aktivnim potiskivanjem poremećaja (ADRC), upravljanje brzinom, PID regulator, FIL simulacija, hardverska validacija

Sažetak


Uvod/cilj: Projektovanje sistema autonomnog praćenja zadate trajektorije besposadnog guseničnog vozila predstavlja složen zadatak zbog postojanja nepoznate i nemerljive dinamike proklizavanja. Stoga je primena standardnih industrijskih upravljačkih algoritama često ograničena.

Metode: Predložena je primena regulatora na osnovu upravljanja sa aktivnim potiskivanjem poremećaja (ADRC), posebno projektovanih za longitudinalni i lateralni kanal upravljanja vozila. Primena navedenog algoritma omogućila je visoke performanse upravljanja u uslovima postojanja nestacionarnosti modela objakta  upravljanja i uticaja poremećaja proklizavanja.

Rezultati: Predstavljena je detaljna procedura primene ADRC algoritma za praćenje zadate putanje besposadnog guseničnog vozila, koja je obuhvatila projektovanje, diskretizaciju, simulacionu analizu performansi i eksperimantalnu verifikaciju na osnovu simulacija sa FPGA hardverom u petlji upravljanja (FIL simulacije).

Zaključak: Predložena metodologija validacije projektovanog sistema upravljanja na osnovu FIL simulacija omogućila je smanjenje projektantskog vremena između čisto računarskih simulacija (koje su najčešće suviše idealizovane) i eksperimentalnih verifikacija na realnom sistemu. Dobijeni rezultati su pokazali prednosti predloženog rešenja u odnosu na standardne industrijske regulatore u različitim uslovima upotrebe besposadnog guseničnog vozila.

 

Reference

Al-Jarrah, A., Salah, M. & Almomani, F. 2019. Controlling a Skid-Steered Tracked Mobile Robot with Slippage Using Various Control Schemes. In: 2019 20th International Conference on Research and Education in Mechatronics (REM). Wels, Austria, pp.1-7, May 23-24. Available at: https://doi.org/10.1109/REM.2019.8744123.

Burke, M. 2012. Path-following control of a velocity constrained tracked vehicle incorporating adaptive slip estimation. In: 2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA, pp.97-102, May 14-18. Available at: https://doi.org/10.1109/ICRA.2012.6224684.

Chen, S., Xue, W., Lin, Z. & Huang, Y. 2019. On Active Disturbance Rejection Control for Path Following of Automated Guided Vehicle with Uncertain Velocities. In: 2019 American Control Conference (ACC). Philadelphia, PA, USA, pp.2446-2451, July 10-12. Available at: https://doi.org/10.23919/ACC.2019.8815348.

Dai, Y., Zhu, X., Zhou, H., Mao, Z. & Wu, W. 2018. Trajectory Tracking Control for Seafloor Tracked Vehicle By Adaptive Neural-Fuzzy Inference System Algorithm. International Journal of Computers Communications & Control, 13(4), pp. 465–476 [online]. Available at: https://www.univagora.ro/jour/index.php/ijccc/article/view/3267 [Accessed: 20 March 2024].

De Luca, A., Oriolo, G. & Samson, C. 1998. Feedback control of a nonholonomic car-like robot. In: Laumond, J.P. (Ed.) Robot Motion Planning and Control. Lecture Notes in Control and Information Sciences. 229, pp.171-253. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/BFb0036073.

Gao, Z. 2003. Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the 2003 American Control Conference. Denver, CO, USA, pp.4989-4996, June 04-06. Available at: https://doi.org/10.1109/ACC.2003.1242516.

Gao, Z. 2006. Active disturbance rejection control: a paradigm shift in feedback control system design. In: 2006 American Control Conference. Minneapolis, MN, USA, p.7, June 14-16. Available at: https://doi.org/10.1109/ACC.2006.1656579.

Gonzalez, R., Fiacchini, M., Alamo, T., Guzman, J.L. & Rodriguez, F. 2010. Adaptive Control for a Mobile Robot Under Slip Conditions Using an LMI-Based Approach. European Journal of Control, 16(2), pp. 144–155. Available at: https://doi.org/10.3166/ejc.16.144-155.

Herbst, G. & Madonski, R. 2023. Tuning and implementation variants of discrete-time ADRC. Control Theory and Technology, 21, pp. 72–88. Available at: https://doi.org/10.1007/s11768-023-00127-0.

Hiramatsu, T., Morita, S., Pencelli, M., Niccolini, M., Ragaglia, M. & Argiolas, A. 2019. Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain. International Journal of Electrical and Computer Engineering, 13(2), pp. 59–64. Available at: https://doi.org/10.5281/zenodo.2571922.

Hong, S., Choi, J.S., Kim, H.W., Won, M.C., Shin, S.C., Rhee, J.S. & Park, H.u. 2009. A path tracking control algorithm for underwater mining vehicles. Journal of Mechanical Science and Technology, 23(8), pp. 2030–2037.

Hu, J., Tao, J., Zhao, W. & Han, Y. 2019. Modeling and simulation of steering control strategy for dual-motor coupling drive tracked vehicle. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, art.number:190. Available at: https://doi.org/10.1007/s40430-019-1692-0.

Huang, H., Zhai, L. & Wang, Z. 2018a. A Power Coupling System for Electric Tracked Vehicles during High-Speed Steering with Optimization-Based Torque Distribution Control. Energies, 11(6), art.number:1538. Available at: https://doi.org/10.3390/en11061538.

Huang, P., Zhang, Z., Luo, X., Zhang, J. & Huang, P. 2018b. Path Tracking Control of a Differential-Drive Tracked Robot Based on Look-ahead Distance. IFAC-PapersOnLine, 51(17), pp. 112–117. Available at: https://doi.org/10.1016/j.ifacol.2018.08.072.

Janarthanan, B., Padmanabhan, C. & Sujatha, C. 2012. Longitudinal dynamics of a tracked vehicle: Simulation and experiment. Journal of Terramechanics, 49(2), pp. 63–72. Available at: https://doi.org/10.1016/j.jterra.2011.11.001.

Łakomy, K., Patelski, R. & Pazderski, D. 2020. ESO Architectures in the Trajectory Tracking ADR Controller for a Mechanical System: A Comparison. In: Bartoszewicz, A., Kabziński, J. & Kacprzyk, J. (Eds.) Advanced, Contemporary Control. 1196, pp.1323–1335. Cham: Springer. Available at: https://doi.org/10.1007/978-3-030-50936-1_110.

Li, Y., Yu, J., Guo, X. & Sun, J. 2020. Path Tracking Method Of Unmanned Agricultural Vehicle Based On Compound Fuzzy Control. In: IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China, pp.1301-1305, December 11-13. Available at: https://doi.org/10.1109/ITAIC49862.2020.9338981.

Lu, H., Xiong, G. & Guo, K. 2016. Motion Predicting of Autonomous Tracked Vehicles with Online Slip Model Identification. Mathematical Problems in Engineering, 2016(1), art.number:6375652. Available at: https://doi.org/10.1155/2016/6375652.

Miklosovic, R., Radke, A. & Gao, Z. 2006. Discrete implementation and generalization of the extended state observer. In: 2006 American Control Conference. Minneapolis, MN, USA, p.6, June 14-16. Available at: https://doi.org/10.1109/ACC.2006.1656547.

Mitsuhashi, T., Chida, Y. & Tanemura, M. 2019. Autonomous Travel of Lettuce Harvester using Model Predictive Control. IFAC-PapersOnLine, 52(30), pp. 155–160. Available at: https://doi.org/10.1016/j.ifacol.2019.12.514.

Nonami, K., Kartidjo, M., Yoon, K.J. & Budiyono, A. 2013. Autonomous Control Systems and Vehicles, Intelligent Unmanned Systems. Tokyo: Springer. Available at: https://doi.org/10.1007/978-4-431-54276-6.

Pentzer, J., Brennan, S. & Reichard, K. 2014. Model-based Prediction of Skidsteer Robot Kinematics Using Online Estimation of Track Instantaneous Centers of Rotation. Journal of Field Robotics, 31(3), pp. 455–476. Available at: https://doi.org/10.1002/rob.21509.

Sabiha, A.D., Kamel, M.A., Said, E. & Hussein, W.M. 2022. ROS-based trajectory tracking control for autonomous tracked vehicle using optimized backstepping and sliding mode control. Robotics and Autonomous Systems, 152, art.number:104058. Available at: https://doi.org/10.1016/j.robot.2022.104058.

Tang, Z., Liu, H., Zhao, Z., Lu, J., Guan, H. & Chen, H. 2021. Trajectory tracking of unmanned tracked vehicle based on model-free algorithm for off-road driving conditions. In: 2021 IEEE International Conference on Unmanned Systems (ICUS). Beijing, China, pp.870-877, October 15-17. Available at: https://doi.org/10.1109/ICUS52573.2021.9641176.

Tao, J., Liu, H., Li, Y., Guan, H., Liu, J. & Chen, H. 2021. Design of Trajectory Tracking Controller of Unmanned Tracked Vehicles Based on Torque Control. In: 2021 IEEE International Conference on Unmanned Systems (ICUS). Beijing, China, pp.85-92, October 15-17. Available at: https://doi.org/10.1109/ICUS52573.2021.9641159.

Wong, J.Y. 2022. Theory of Ground Vehicles, 5th Edition. Hoboken, NJ, USA: John Wiley & Sons. ISBN: 978-1-119-71970-0.

Zhang, X., Zhang, X., Xue, W. & Xin, B. 2021. An overview on recent progress of extended state observers for uncertain systems: Methods, theory, and applications. Advanced Control for Applications: Engineering and Industrial Systems, 3(2), e89. Available at: https://doi.org/10.1002/adc2.89.

Zou, T., Angeles, J. & Hassani, F. 2018. Dynamic modeling and trajectory tracking control of unmanned tracked vehicles. Robotics and Autonomous Systems, 110, pp. 102–111. Available at: https://doi.org/10.1016/j.robot.2018.09.008.

Objavljeno
2024/11/17
Rubrika
Originalni naučni radovi