Effects of scrap rubber waste on the mechanical performance of mortar made of crushed sand and sediment
Abstract
Introduction/purpose: The consumption of natural sand in Algeria is high due to its extensive use in mortar, while sediments and rubber waste pose significant environmental and societal challenges. This study investigates the effects of incorporating rubber waste content in mortars mixed with crushed sand and sediment. The primary goal is to valorize crushed sand particles through physical and mechanical tests, evaluating their potential as an alternative to natural sand in mortar mixtures.
Methods: Experimental work was carried out to study the impact of partially and fully replacing sediments with crushed sand particles in mortar mixes. Mortar mixtures were prepared using different sediment-to-crushed sand ratios (10%, 25%, 35%, 50%, and 100%) to observe their influence on physical and mechanical properties. Additionally, the effects of adding 2%, 4%, and 6% granulated rubber to the optimal mortar were analyzed. Various tests, including those tsting compressive strength, flexural strength, and ultrasonic pulse velocity, were performed to evaluate the performance of the mixtures.
Results: The results indicated that replacing sediment with crushed sand improved the strength properties of mortar, particularly due to better particle packing. The mortar containing 65 wt% sediments and 35 wt% crushed sand showed properties similar to the reference mortar. The addition of rubber waste increased compressibility but enhanced mechanical properties when used in moderation. Ultrasonic pulse velocity decreased with higher crushed sand content, and the porosity of the mixtures was reduced.
Conclusions: Crushed sand and sediment particles are effective fillers for mortar, ensuring good performance and improved strength. The efficiency of these materials depends on their morphology and genesis. The study demonstrates that crushed sand can be a viable alternative to natural sand, and rubber waste can be used as a reinforcing material in mortar, though its proportions should be carefully controlled to avoid negative effects on mechanical properties.
References
-AFNOR Association française de normalisation. 1991. NF P94-054: Sols : reconnaissances et essais - Détermination de la masse volumique des particules solides des sols - Méthode du pycnomètre à eau [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94054/sols-reconnaissance-et-essais-determination-de-la-masse-volumique-des-parti/fa020767/11077 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1992. NF P94-057: Sols : reconnaissance et essais - Analyse granulométrique des sols - Méthode par sédimentation [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94057/sols-reconnaissance-et-essais-analyse-granulometrique-des-sols-methode-par-/fa020768/11074 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1993. NF P94-051: Sols : reconnaissance et essais - Détermination des limites d'Atterberg - Limite de liquidité à la coupelle - Limite de plasticité au rouleau [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94051/sols-reconnaissance-et-essais-determination-des-limites-datterberg-limite-d/fa020765/11080 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1990. NF EN 196-1: Méthodes d'essais des ciments. Détermination des résistances mécaniques [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-en-1961/methodes-dessais-des-ciments-determination-des-resistances-mecaniques/fa020279/77168 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1996. NF P94-056: Sols : reconnaissance et essais - Analyse granulométrique - Méthode par tamisage à sec après lavage [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94056/sols-reconnaissance-et-essais-analyse-granulometrique-methode-par-tamisage-/fa026936/11075 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1998a. NF EN 1744-1: Essais pour déterminer les propriétés chimiques des granulats - Partie 1 : analyse chimique [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-en-17441/essais-pour-determiner-les-proprietes-chimiques-des-granulats-partie-1-anal/fa039721/62422 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1998b. NF P94-068: Sols : reconnaissance et essais - Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériau rocheux - Détermination de la valeur de bleu de méthylène d'un sol ou d'un matériau rocheux par l'essai à la tache [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94068/sols-reconnaissance-et-essais-mesure-de-la-capacite-dadsorption-de-bleu-de-/fa043689/394 [Accessed: 29 March 2024].
Akbulut, S., Arasan, S. & Kalkan E. 2007. Modification of clayey soils using scrap tire rubber and synthetic fibres. Applied Clay Science, 38(1-2), pp.23-32. Available at: https://doi.org/10.1016/j.clay.2007.02.001.
Amar, M., Benzerzour, M., Safhi, A.E.M. & Abriak, N.-E. 2018. Durability of a cementitious matrix based on treated sediments. Case Studies in Construction Materials, 8, pp.258-276. Available at: https://doi.org/10.1016/j.cscm.2018.01.007.
Aoual-Benslafa, F.K., Kerdal, D., Ameur, M., Mekerta, B. & Semcha, A. 2015. Durability of Mortars Made with Dredged Sediments. Procedia Engineering, 118, pp.240-250. Available at: https://doi.org/10.1016/j.proeng.2015.08.423.
Arnould, M. & Virlogeux, M. & 1986. Granulats et bétons légers. Champs-sur-Marne, France: Presses de l'école nationale des Ponts et Chaussées. ISBN: 978-2-85978-086-9.
Bédérina, M., Khenfer, M.M., Dheilly, R.M. & Quéneudec, M. 2005. Reuse of local sand: effect of limestone filler proportion on the rheological and mechanical properties of different sand concretes. Cement and Concrete Research, 35(6), pp.1172-1179. Available at: https://doi.org/10.1016/j.cemconres.2004.07.006.
Bederina, M., Makhloufi, Z., Bounoua, A., Bouziani, T. & Quéneudec, M. 2013. Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions. Construction and Building Materials, 47, pp.146-158, Available at: https://doi.org/10.1016/j.conbuildmat.2013.05.037.
Bell, F.G. 1993. Engineering Treatment of Soils, 1st Edition. London: CRC Press. Abailable at: https://doi.org/10.1201/9781482288971.
Benyamina, S., Menadi, B., Bernard, S. & Kenai S. 2019. Performance of self-compacting concrete with manufactured crushed sand. Advances in concrete construction, 7(2), pp.87-96, Available at: https://doi.org/10.12989/acc.2019.7.2.087.
Bin Kabit, M.R., Sarkawi, S.S.R., Mannan, M.D.A. & Adebayo, J.O. 2021. Effect of Silica Fume and Synthetic Fibre towards the Compressive Strength of Modified Crumb Rubber Cement Mortar. Defect and Diffusion Forum, 411, pp.135-142. Available at: https://doi.org/10.4028/www.scientific.net/DDF.411.135.
Cepuritisa, R., Jacobsena, S., Pedersenc, B. & Mørtsell, E. 2016. Crushed sand in concrete – Effect of particle shape in different fractions and filler properties on rheology. Cement and Concrete Composites, 74, pp.26-41. Available at: https://doi.org/10.1016/j.cemconcomp.2016.04.004.
Cetin, H., Fener, M. & Gunaydin, O. 2006. Geotechnical properties of tire-cohesive clayey soil mixtures as fill material. Engineering Geology, 88(1-2), pp.110-120. Available at: https://doi.org/10.1016/j.enggeo.2006.09.002.
Cherrak, M., Bali, A. & Silhadi, K. 2013. Concrete mix design containing calcareous tuffs as a partial sand substitution. Construction and Building Materials, 47, pp.318-323. Available at: https://doi.org/10.1016/j.conbuildmat.2013.05.051.
Chouhan, H.S., Kalla, P., Nagar, R., Gautam, P.K. & Arora, A.N. 2020. Investigating use of dimensional limestone slurry waste as fine aggregate in mortar. Environment, Development and Sustainability, 22, pp.2223-2245. Available at: https://doi.org/10.1007/s10668-018-0286-9.
Corinaldesi, V. 2012. Recycled-Aggregate Bedding Mortars for Repair of Historical Buildings. Applied Mechanics and Materials, 174-177, pp.1481-1488. Available at: https://doi.org/10.4028/www.scientific.net/AMM.174-177.1481.
D'Antino, T., Carozzi, F.G. & Poggi, C. 2019. Diagonal Compression of Masonry Walls Strengthened with Composite Reinforced Mortar. Key Engineering Materials, 817, pp.528-535. Available at: https://doi.org/10.4028/www.scientific.net/KEM.817.528.
Fonti, V., Dell'Anno, A. & Beolchini, F. 2013. Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment. Water Research, 47(14), pp.5139-5152, Available at: https://doi.org/10.1016/j.watres.2013.05.052.
Gupta, T., Siddique, S., Sharma, R.K. & Chaudhary, S. 2019. Behaviour of waste rubber powder and hybrid rubber concrete in aggressive environment. Construction and Building Materials, 217, pp.283-291. Available at: https://doi.org/10.1016/j.conbuildmat.2019.05.080.
Jiang, W., Zhu, H., Haruna, S.I., Shao, J., Yu, Y. & Wu, K. 2022. Mechanical properties and freeze–thaw resistance of polyurethane-based polymer mortar with crumb rubber powder. Construction and Building Materials, 352, art.number:129040. Available at: https://doi.org/10.1016/j.conbuildmat.2022.129040.
Khan, I.M., Kabir, S., Alhussain, M.A. & Almansoor, F.F. 2016. Asphalt Design Using Recycled Plastic and Crumb-rubber Waste for Sustainable Pavement Construction. Procedia Engineering,145, pp.1557-1564. Available at: https://doi.org/10.1016/j.proeng.2016.04.196.
Khorrami, M., Vafai, A., Khalilitabas, A.A., Desai, C.S. & Ardakani, M.H.M. 2010. Experimental Investigation on Mechanical Characteristics and Environmental Effects on Rubber Concrete. International Journal of Concrete Structures and Materials, 4(1), pp.17-23. Available at: https://doi.org/10.4334/IJCSM.2010.4.1.017.
Lam, N.N. 2020. A Study on Using Crushed Sand to Replace Natural Sand in High-Strength Self-compacting Concrete Towards Sustainable Development in Construction. In: IOP Conference Series: Earth and Environmental Science; 6th International Conference on Environment and Renewable Energy, Hanoi, Vietnam, 505, art.number:012003, February 24-26. Available at: https://doi.org/10.1088/1755-1315/505/1/012003.
Li, X. & Liu, J. 2021. One-dimensional compression feature and particle crushability behavior of dry calcareous sand considering fine-grained soil content and relative compaction. Bulletin of Engineering Geology and the Environment, 80, pp.4049-4065. Available at: https://doi.org/10.1007/s10064-021-02160-2.
Lu, L.L., Zhang, R. & Zhang, Y.B. 2022. Experimental Study of Cement Mortar on Compressive Strength and Wave Velocity Characteristics for Different Sand/Cement Ratio and Particle Sizes. Key Engineering Materials, 931, pp.199-204. Available at: https://doi.org/10.4028/p-dlhef1.
Ma, Z., Shen, J., Wang, C. & Wu, H. 2022. Characterization of sustainable mortar containing high-quality recycled manufactured sand crushed from recycled coarse aggregate. Cement and Concrete Composites, 132, art.number:104629. Available at: https://doi.org/10.1016/j.cemconcomp.2022.104629.
Nakhaei, A., Marandi, S.M., Sani Kermani, S. & Bagheripour, M.H. 2012. Dynamic properties of granular soils mixed with granulated rubber. Soil Dynamics and Earthquake Engineering, 43, pp.124-132. Available at: https://doi.org/10.1016/j.soildyn.2012.07.026.
-NBN Bureau of Normalization. 1999. NBN EN 1015-10:1999: Méthodes d'essai des mortiers pour la maçonnerie - Partie 10: Détermination de la masse volumique apparente séche du mortier durci [online]. Available at: https://app.nbn.be/data/r/platform/frontend/detail?p40_id=273242&p40_language_code=fr&p40_detail_id=101336&lang=fr [Accessed: 29 March 2024].
Okagbue, C.O. & Onyeobi, T.U.S. 1999. Potential of marble dust to stabilize red tropical soils for road construction. Engineering Geology, 53(3-4), pp.371-380. Available at: https://doi.org/10.1016/S0013-7952(99)00036-8.
Pavia, S. & Toomey, A.B. 2008. Influence of the aggregate quality on the physical properties of natural feebly-hydraulic lime mortars. Materials and Structures, 41, pp.559-569. Available at: https://doi.org/10.1617/s11527-007-9267-4.
Rattanaveeranon, S., Dumrongsil, S. & Jiamwattanapong, K. 2019. Effect of Latex Rubber and Rubber Powder as an Admixture on Bending Strength of Cement Mortar. Applied Mechanics and Materials, 891, pp.180-186. Available at: https://doi.org/10.4028/www.scientific.net/AMM.891.180.
Schmitz, R.M., Schreoder, C. & Charlier, R. 2004. Chemo-mechanical interactions in clay a correlation between clay mineralogy and Atterberg limits. Applied Clay Science, 26(1-4), pp.351-358. Available at: https://doi.org/10.1016/j.clay.2003.12.015.
Sellaf, H., Balegh, B. & Bkhiti, M. 2023. The Assessment and Treatment of Dredged Sediments and Limestone Tuff Using Waste Ceramic with Low-Cement. Advanced Engineering Forum, 48, pp.45-58. Available at: https://doi.org/10.4028/p-2j4d93.
Singh, L.P., Goel, A., Bhattachharyya, S.K., Ahalawat, S., Sharma, U. & Mishra, G. 2015. Effect of Morphology and Dispersibility of Silica Nanoparticles on the Mechanical Behaviour of Cement Mortar. International Journal of Concrete Structures and Materials, 9(2), pp.207-217. Available at: https://doi.org/10.1007/s40069-015-0099-2.
Sivapullaiah, P.V., Sridharan, A. & Bhaskar Raju, K.V. 2000. Role of amount and type of clay in the lime stabilization of soils. Proceedings of the Institution of Civil Engineers - Ground Improvement, 4(1), pp.37-45. Available at: https://doi.org/10.1680/grim.2000.4.1.37.
Srivastava, A. & Singh, S.K. 2020. Utilization of alternative sand for preparation of sustainable mortar: A review. Journal of Cleaner Production, 253, art.number:119706, Available at: https://doi.org/10.1016/j.jclepro.2019.119706.
Su, P., Dai, Q., Li, M., Ma, Y. & Wang, J. 2022. Investigation of the mechanical and Shrinkage properties of plastic-rubber compound modified cement mortar with recycled tire steel fiber. Construction and Building Materials, 334, art.number:127391. Available at: https://doi.org/10.1016/j.conbuildmat.2022.127391.
Torres, M.L. & García-Ruiz, P.A. 2009. Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cement and Concrete Composites, 31(2), pp.114-119. Available at: https://doi.org/10.1016/j.cemconcomp.2008.11.003.
Trouzine, H., Bekhiti, M. & Asroun, A. 2012. No AccessEffects of scrap tyre rubber fibre on swelling behaviour of two clayey soils in Algeria. Geosynthetics International, 19(2), pp.124-132, Available at: https://doi.org/10.1680/gein.2012.19.2.124.
Wang, J.-J., Zhang, H.-P., Deng, D.-P. & Liu, M.-W. 2013. Effects of mudstone particle content on compaction behavior and particle crushing of a crushed sandstone–mudstone particle mixture. Engineering Geology, 167, pp.1-5. Available at: https://doi.org/10.1016/j.enggeo.2013.10.004.
Wei, C.B., Othman, R., Sheng, T.W., Jaya, R.P. & Al Bakri Abdullah, M.M. 2021. Properties of Mortar with Waste Tyre Rubber as Partial Sand Replacement. Key Engineering Materials, 879, pp.49-61. Available at: https://doi.org/10.4028/www.scientific.net/KEM.879.49.
Copyright (c) 2025 Adda Hadj Mostefa, Benamar Balegh, Hamid Sellaf, Mohamed Elamine Dahamni

This work is licensed under a Creative Commons Attribution 4.0 International License.
Proposed Creative Commons Copyright Notices
Proposed Policy for Military Technical Courier (Journals That Offer Open Access)
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
