Uticaj otpadnog gumenog granulata na mehaničke performanse maltera od drobljenog peska i sedimenta

  • Adda Hadj Mostefa Univerzitet u Relizanu, Departman za građevinarstvo i javne radove, Laboratorija za inovativne materijale i obnovljive energije, Relizane, Narodna Demokratska Republika Alžir https://orcid.org/0009-0004-0086-9280
  • Benamar Balegh Univerzitet „Ahmed Draia” u Adraru, Odsek za građevinarstvo, Adrar, Narodna Demokratska Republika Alžir + Laboratorija za građevinarstvo i zaštitu životne sredine, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0000-0002-8529-7063
  • Hamid Sellaf Univerzitet u Saidi, Odsek za građevinarstvo i hidrauliku, Saida, Narodna Demokratska Republika Alžir + Laboratorija za građevinarstvo i zaštitu životne sredine, Sidi Bel Abes, Narodna Demokratska Republika Alžir https://orcid.org/0009-0006-3943-3024
  • Mohamed Elamine Dahamni Univerzitet „Ahmed Ben Bela” u Oranu 1, Laboratorija za nauku o kondenzovanoj materiji (LSMC), Oran 1, Narodna Demokratska Republika Alžir https://orcid.org/0000-0001-5920-1198
Ključne reči: malter, sediment, drobljeni pesak, gumeni granulat, čvrstoća na pritisak, čvrstoća na istezanje

Sažetak


Uvod/cilj: Potrošnja prirodnog peska u Alžiru je velika zbog njegove široke upotrebe u malterima, dok sedimenti i gumeni otpad predstavljaju značajan ekološki i društveni problem. Ova studija istražuje uticaj korišćenja gumenog otpada u malterima pomešanog sa drobljenim peskom i sedimentima. Osnovni cilj bio je da se izvrši valorizacija čestica drobljenog peska putem fizičkog i mehaničkog ispitivanja, kao i da se proceni njihov potencijal da zamene prirodni pesak u mešavinama maltera.

Metode: Eksperimentalnim putem proučavan je uticaj delimične i potpune zamene sedimenata česticama drobljenog peska u mešavinama maltera. One su pripremljene u različitim odnosima sedimenta i drobljenog peska (10%, 25%, 35%, 50% i 100%) kako bi se ispitao njihov uticaj na fizička i mehanička svojstva. Takođe, analizirani su efekti dodavanja 2%, 4% i 6% gumenog granulata optimalnom malteru. Izvršena su različita ispitivanja, uključujući testiranja čvrstoće, čvrstoće na savijanje i brzine ultrazvučnog impulsa radi procene performansi mešavina.

Rezultati: Pokazano je da zamena sedimenta drobljenim peskom poboljšava svojstva čvrstoće maltera, naročito zbog boljeg pakovanja čestica. Malter sa 65 tež% sedimenta i 35 tež% drobljenog peska ispoljio je svojstva slična referentnom malteru. Dodavanje gumenog otpada povećalo je stišljivost, ali i poboljšalo mehanička svojstva kada se koristio umereno. Brzina ultrazvučnog impulsa opala je sa većim sadržajem drobljenog peska, a poroznost mešavina se smanjila.

Zaključak: Čestice drobljenog peska i sedimenata su efekasna veziva za malter koja obezbeđuju dobre performanse i poboljšavaju čvrstoću. Efikasnost ovih materijala zavisi od njihove morfologije i porekla. Studija pokazuje da drobljeni pesak može da bude održiva alternativa prirodnom pesku, a da se gumeni otpad može koristiti kao materijal za ojačavanje maltera, mada treba pažljivo kontrolisati njegov udeo kako bi se izbegao negativan uticaj na mehanička svojstva.

Reference

-AFNOR Association française de normalisation. 1991. NF P94-054: Sols : reconnaissances et essais - Détermination de la masse volumique des particules solides des sols - Méthode du pycnomètre à eau [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94054/sols-reconnaissance-et-essais-determination-de-la-masse-volumique-des-parti/fa020767/11077 [Accessed: 29 March 2024].

-AFNOR Association française de normalisation. 1992. NF P94-057: Sols : reconnaissance et essais - Analyse granulométrique des sols - Méthode par sédimentation [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94057/sols-reconnaissance-et-essais-analyse-granulometrique-des-sols-methode-par-/fa020768/11074 [Accessed: 29 March 2024].

-AFNOR Association française de normalisation. 1993. NF P94-051: Sols : reconnaissance et essais - Détermination des limites d'Atterberg - Limite de liquidité à la coupelle - Limite de plasticité au rouleau [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94051/sols-reconnaissance-et-essais-determination-des-limites-datterberg-limite-d/fa020765/11080 [Accessed: 29 March 2024].

-AFNOR Association française de normalisation. 1990. NF EN 196-1: Méthodes d'essais des ciments. Détermination des résistances mécaniques [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-en-1961/methodes-dessais-des-ciments-determination-des-resistances-mecaniques/fa020279/77168 [Accessed: 29 March 2024].

-AFNOR Association française de normalisation. 1996. NF P94-056: Sols : reconnaissance et essais - Analyse granulométrique - Méthode par tamisage à sec après lavage [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94056/sols-reconnaissance-et-essais-analyse-granulometrique-methode-par-tamisage-/fa026936/11075 [Accessed: 29 March 2024].

-AFNOR Association française de normalisation. 1998a. NF EN 1744-1: Essais pour déterminer les propriétés chimiques des granulats - Partie 1 : analyse chimique [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-en-17441/essais-pour-determiner-les-proprietes-chimiques-des-granulats-partie-1-anal/fa039721/62422 [Accessed: 29 March 2024].

-AFNOR Association française de normalisation. 1998b. NF P94-068: Sols : reconnaissance et essais - Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériau rocheux - Détermination de la valeur de bleu de méthylène d'un sol ou d'un matériau rocheux par l'essai à la tache [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94068/sols-reconnaissance-et-essais-mesure-de-la-capacite-dadsorption-de-bleu-de-/fa043689/394 [Accessed: 29 March 2024].

Akbulut, S., Arasan, S. & Kalkan E. 2007. Modification of clayey soils using scrap tire rubber and synthetic fibres. Applied Clay Science, 38(1-2), pp.23-32. Available at: https://doi.org/10.1016/j.clay.2007.02.001.

Amar, M., Benzerzour, M., Safhi, A.E.M. & Abriak, N.-E. 2018. Durability of a cementitious matrix based on treated sediments. Case Studies in Construction Materials, 8, pp.258-276. Available at: https://doi.org/10.1016/j.cscm.2018.01.007.

Aoual-Benslafa, F.K., Kerdal, D., Ameur, M., Mekerta, B. & Semcha, A. 2015. Durability of Mortars Made with Dredged Sediments. Procedia Engineering, 118, pp.240-250. Available at: https://doi.org/10.1016/j.proeng.2015.08.423.

Arnould, M. & Virlogeux, M. & 1986. Granulats et bétons légers. Champs-sur-Marne, France: Presses de l'école nationale des Ponts et Chaussées. ISBN: 978-2-85978-086-9.

Bédérina, M., Khenfer, M.M., Dheilly, R.M. & Quéneudec, M. 2005. Reuse of local sand: effect of limestone filler proportion on the rheological and mechanical properties of different sand concretes. Cement and Concrete Research, 35(6), pp.1172-1179. Available at: https://doi.org/10.1016/j.cemconres.2004.07.006.

Bederina, M., Makhloufi, Z., Bounoua, A., Bouziani, T. & Quéneudec, M. 2013. Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions. Construction and Building Materials, 47, pp.146-158, Available at: https://doi.org/10.1016/j.conbuildmat.2013.05.037.

Bell, F.G. 1993. Engineering Treatment of Soils, 1st Edition. London: CRC Press. Abailable at: https://doi.org/10.1201/9781482288971.

Benyamina, S., Menadi, B., Bernard, S. & Kenai S. 2019. Performance of self-compacting concrete with manufactured crushed sand. Advances in concrete construction, 7(2), pp.87-96, Available at: https://doi.org/10.12989/acc.2019.7.2.087.

Bin Kabit, M.R., Sarkawi, S.S.R., Mannan, M.D.A. & Adebayo, J.O. 2021. Effect of Silica Fume and Synthetic Fibre towards the Compressive Strength of Modified Crumb Rubber Cement Mortar. Defect and Diffusion Forum, 411, pp.135-142. Available at: https://doi.org/10.4028/www.scientific.net/DDF.411.135.

Cepuritisa, R., Jacobsena, S., Pedersenc, B. & Mørtsell, E. 2016. Crushed sand in concrete – Effect of particle shape in different fractions and filler properties on rheology. Cement and Concrete Composites, 74, pp.26-41. Available at: https://doi.org/10.1016/j.cemconcomp.2016.04.004.

Cetin, H., Fener, M. & Gunaydin, O. 2006. Geotechnical properties of tire-cohesive clayey soil mixtures as fill material. Engineering Geology, 88(1-2), pp.110-120. Available at: https://doi.org/10.1016/j.enggeo.2006.09.002.

Cherrak, M., Bali, A. & Silhadi, K. 2013. Concrete mix design containing calcareous tuffs as a partial sand substitution. Construction and Building Materials, 47, pp.318-323. Available at: https://doi.org/10.1016/j.conbuildmat.2013.05.051.

Chouhan, H.S., Kalla, P., Nagar, R., Gautam, P.K. & Arora, A.N. 2020. Investigating use of dimensional limestone slurry waste as fine aggregate in mortar. Environment, Development and Sustainability, 22, pp.2223-2245. Available at: https://doi.org/10.1007/s10668-018-0286-9.

Corinaldesi, V. 2012. Recycled-Aggregate Bedding Mortars for Repair of Historical Buildings. Applied Mechanics and Materials, 174-177, pp.1481-1488. Available at: https://doi.org/10.4028/www.scientific.net/AMM.174-177.1481.

D'Antino, T., Carozzi, F.G. & Poggi, C. 2019. Diagonal Compression of Masonry Walls Strengthened with Composite Reinforced Mortar. Key Engineering Materials, 817, pp.528-535. Available at: https://doi.org/10.4028/www.scientific.net/KEM.817.528.

Fonti, V., Dell'Anno, A. & Beolchini, F. 2013. Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment. Water Research, 47(14), pp.5139-5152, Available at: https://doi.org/10.1016/j.watres.2013.05.052.

Gupta, T., Siddique, S., Sharma, R.K. & Chaudhary, S. 2019. Behaviour of waste rubber powder and hybrid rubber concrete in aggressive environment. Construction and Building Materials, 217, pp.283-291. Available at: https://doi.org/10.1016/j.conbuildmat.2019.05.080.

Jiang, W., Zhu, H., Haruna, S.I., Shao, J., Yu, Y. & Wu, K. 2022. Mechanical properties and freeze–thaw resistance of polyurethane-based polymer mortar with crumb rubber powder. Construction and Building Materials, 352, art.number:129040. Available at: https://doi.org/10.1016/j.conbuildmat.2022.129040.

Khan, I.M., Kabir, S., Alhussain, M.A. & Almansoor, F.F. 2016. Asphalt Design Using Recycled Plastic and Crumb-rubber Waste for Sustainable Pavement Construction. Procedia Engineering,145, pp.1557-1564. Available at: https://doi.org/10.1016/j.proeng.2016.04.196.

Khorrami, M., Vafai, A., Khalilitabas, A.A., Desai, C.S. & Ardakani, M.H.M. 2010. Experimental Investigation on Mechanical Characteristics and Environmental Effects on Rubber Concrete. International Journal of Concrete Structures and Materials, 4(1), pp.17-23. Available at: https://doi.org/10.4334/IJCSM.2010.4.1.017.

Lam, N.N. 2020. A Study on Using Crushed Sand to Replace Natural Sand in High-Strength Self-compacting Concrete Towards Sustainable Development in Construction. In: IOP Conference Series: Earth and Environmental Science; 6th International Conference on Environment and Renewable Energy, Hanoi, Vietnam, 505, art.number:012003, February 24-26. Available at: https://doi.org/10.1088/1755-1315/505/1/012003.

Li, X. & Liu, J. 2021. One-dimensional compression feature and particle crushability behavior of dry calcareous sand considering fine-grained soil content and relative compaction. Bulletin of Engineering Geology and the Environment, 80, pp.4049-4065. Available at: https://doi.org/10.1007/s10064-021-02160-2.

Lu, L.L., Zhang, R. & Zhang, Y.B. 2022. Experimental Study of Cement Mortar on Compressive Strength and Wave Velocity Characteristics for Different Sand/Cement Ratio and Particle Sizes. Key Engineering Materials, 931, pp.199-204. Available at: https://doi.org/10.4028/p-dlhef1.

Ma, Z., Shen, J., Wang, C. & Wu, H. 2022. Characterization of sustainable mortar containing high-quality recycled manufactured sand crushed from recycled coarse aggregate. Cement and Concrete Composites, 132, art.number:104629. Available at: https://doi.org/10.1016/j.cemconcomp.2022.104629.

Nakhaei, A., Marandi, S.M., Sani Kermani, S. & Bagheripour, M.H. 2012. Dynamic properties of granular soils mixed with granulated rubber. Soil Dynamics and Earthquake Engineering, 43, pp.124-132. Available at: https://doi.org/10.1016/j.soildyn.2012.07.026.

-NBN Bureau of Normalization. 1999. NBN EN 1015-10:1999: Méthodes d'essai des mortiers pour la maçonnerie - Partie 10: Détermination de la masse volumique apparente séche du mortier durci [online]. Available at: https://app.nbn.be/data/r/platform/frontend/detail?p40_id=273242&p40_language_code=fr&p40_detail_id=101336&lang=fr [Accessed: 29 March 2024].

Okagbue, C.O. & Onyeobi, T.U.S. 1999. Potential of marble dust to stabilize red tropical soils for road construction. Engineering Geology, 53(3-4), pp.371-380. Available at: https://doi.org/10.1016/S0013-7952(99)00036-8.

Pavia, S. & Toomey, A.B. 2008. Influence of the aggregate quality on the physical properties of natural feebly-hydraulic lime mortars. Materials and Structures, 41, pp.559-569. Available at: https://doi.org/10.1617/s11527-007-9267-4.

Rattanaveeranon, S., Dumrongsil, S. & Jiamwattanapong, K. 2019. Effect of Latex Rubber and Rubber Powder as an Admixture on Bending Strength of Cement Mortar. Applied Mechanics and Materials, 891, pp.180-186. Available at: https://doi.org/10.4028/www.scientific.net/AMM.891.180.

Schmitz, R.M., Schreoder, C. & Charlier, R. 2004. Chemo-mechanical interactions in clay a correlation between clay mineralogy and Atterberg limits. Applied Clay Science, 26(1-4), pp.351-358. Available at: https://doi.org/10.1016/j.clay.2003.12.015.

Sellaf, H., Balegh, B. & Bkhiti, M. 2023. The Assessment and Treatment of Dredged Sediments and Limestone Tuff Using Waste Ceramic with Low-Cement. Advanced Engineering Forum, 48, pp.45-58. Available at: https://doi.org/10.4028/p-2j4d93.

Singh, L.P., Goel, A., Bhattachharyya, S.K., Ahalawat, S., Sharma, U. & Mishra, G. 2015. Effect of Morphology and Dispersibility of Silica Nanoparticles on the Mechanical Behaviour of Cement Mortar. International Journal of Concrete Structures and Materials, 9(2), pp.207-217. Available at: https://doi.org/10.1007/s40069-015-0099-2.

Sivapullaiah, P.V., Sridharan, A. & Bhaskar Raju, K.V. 2000. Role of amount and type of clay in the lime stabilization of soils. Proceedings of the Institution of Civil Engineers - Ground Improvement, 4(1), pp.37-45. Available at: https://doi.org/10.1680/grim.2000.4.1.37.

Srivastava, A. & Singh, S.K. 2020. Utilization of alternative sand for preparation of sustainable mortar: A review. Journal of Cleaner Production, 253, art.number:119706, Available at: https://doi.org/10.1016/j.jclepro.2019.119706.

Su, P., Dai, Q., Li, M., Ma, Y. & Wang, J. 2022. Investigation of the mechanical and Shrinkage properties of plastic-rubber compound modified cement mortar with recycled tire steel fiber. Construction and Building Materials, 334, art.number:127391. Available at: https://doi.org/10.1016/j.conbuildmat.2022.127391.

Torres, M.L. & García-Ruiz, P.A. 2009. Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cement and Concrete Composites, 31(2), pp.114-119. Available at: https://doi.org/10.1016/j.cemconcomp.2008.11.003.

Trouzine, H., Bekhiti, M. & Asroun, A. 2012. No AccessEffects of scrap tyre rubber fibre on swelling behaviour of two clayey soils in Algeria. Geosynthetics International, 19(2), pp.124-132, Available at: https://doi.org/10.1680/gein.2012.19.2.124.

Wang, J.-J., Zhang, H.-P., Deng, D.-P. & Liu, M.-W. 2013. Effects of mudstone particle content on compaction behavior and particle crushing of a crushed sandstone–mudstone particle mixture. Engineering Geology, 167, pp.1-5. Available at: https://doi.org/10.1016/j.enggeo.2013.10.004.

Wei, C.B., Othman, R., Sheng, T.W., Jaya, R.P. & Al Bakri Abdullah, M.M. 2021. Properties of Mortar with Waste Tyre Rubber as Partial Sand Replacement. Key Engineering Materials, 879, pp.49-61. Available at: https://doi.org/10.4028/www.scientific.net/KEM.879.49.

Objavljeno
2025/02/02
Rubrika
Originalni naučni radovi