Uticaj otpadnog gumenog granulata na mehaničke performanse maltera od drobljenog peska i sedimenta
Sažetak
Uvod/cilj: Potrošnja prirodnog peska u Alžiru je velika zbog njegove široke upotrebe u malterima, dok sedimenti i gumeni otpad predstavljaju značajan ekološki i društveni problem. Ova studija istražuje uticaj korišćenja gumenog otpada u malterima pomešanog sa drobljenim peskom i sedimentima. Osnovni cilj bio je da se izvrši valorizacija čestica drobljenog peska putem fizičkog i mehaničkog ispitivanja, kao i da se proceni njihov potencijal da zamene prirodni pesak u mešavinama maltera.
Metode: Eksperimentalnim putem proučavan je uticaj delimične i potpune zamene sedimenata česticama drobljenog peska u mešavinama maltera. One su pripremljene u različitim odnosima sedimenta i drobljenog peska (10%, 25%, 35%, 50% i 100%) kako bi se ispitao njihov uticaj na fizička i mehanička svojstva. Takođe, analizirani su efekti dodavanja 2%, 4% i 6% gumenog granulata optimalnom malteru. Izvršena su različita ispitivanja, uključujući testiranja čvrstoće, čvrstoće na savijanje i brzine ultrazvučnog impulsa radi procene performansi mešavina.
Rezultati: Pokazano je da zamena sedimenta drobljenim peskom poboljšava svojstva čvrstoće maltera, naročito zbog boljeg pakovanja čestica. Malter sa 65 tež% sedimenta i 35 tež% drobljenog peska ispoljio je svojstva slična referentnom malteru. Dodavanje gumenog otpada povećalo je stišljivost, ali i poboljšalo mehanička svojstva kada se koristio umereno. Brzina ultrazvučnog impulsa opala je sa većim sadržajem drobljenog peska, a poroznost mešavina se smanjila.
Zaključak: Čestice drobljenog peska i sedimenata su efekasna veziva za malter koja obezbeđuju dobre performanse i poboljšavaju čvrstoću. Efikasnost ovih materijala zavisi od njihove morfologije i porekla. Studija pokazuje da drobljeni pesak može da bude održiva alternativa prirodnom pesku, a da se gumeni otpad može koristiti kao materijal za ojačavanje maltera, mada treba pažljivo kontrolisati njegov udeo kako bi se izbegao negativan uticaj na mehanička svojstva.
Reference
-AFNOR Association française de normalisation. 1991. NF P94-054: Sols : reconnaissances et essais - Détermination de la masse volumique des particules solides des sols - Méthode du pycnomètre à eau [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94054/sols-reconnaissance-et-essais-determination-de-la-masse-volumique-des-parti/fa020767/11077 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1992. NF P94-057: Sols : reconnaissance et essais - Analyse granulométrique des sols - Méthode par sédimentation [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94057/sols-reconnaissance-et-essais-analyse-granulometrique-des-sols-methode-par-/fa020768/11074 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1993. NF P94-051: Sols : reconnaissance et essais - Détermination des limites d'Atterberg - Limite de liquidité à la coupelle - Limite de plasticité au rouleau [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94051/sols-reconnaissance-et-essais-determination-des-limites-datterberg-limite-d/fa020765/11080 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1990. NF EN 196-1: Méthodes d'essais des ciments. Détermination des résistances mécaniques [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-en-1961/methodes-dessais-des-ciments-determination-des-resistances-mecaniques/fa020279/77168 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1996. NF P94-056: Sols : reconnaissance et essais - Analyse granulométrique - Méthode par tamisage à sec après lavage [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94056/sols-reconnaissance-et-essais-analyse-granulometrique-methode-par-tamisage-/fa026936/11075 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1998a. NF EN 1744-1: Essais pour déterminer les propriétés chimiques des granulats - Partie 1 : analyse chimique [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-en-17441/essais-pour-determiner-les-proprietes-chimiques-des-granulats-partie-1-anal/fa039721/62422 [Accessed: 29 March 2024].
-AFNOR Association française de normalisation. 1998b. NF P94-068: Sols : reconnaissance et essais - Mesure de la capacité d'adsorption de bleu de méthylène d'un sol ou d'un matériau rocheux - Détermination de la valeur de bleu de méthylène d'un sol ou d'un matériau rocheux par l'essai à la tache [online]. Available at: https://www.boutique.afnor.org/fr-fr/norme/nf-p94068/sols-reconnaissance-et-essais-mesure-de-la-capacite-dadsorption-de-bleu-de-/fa043689/394 [Accessed: 29 March 2024].
Akbulut, S., Arasan, S. & Kalkan E. 2007. Modification of clayey soils using scrap tire rubber and synthetic fibres. Applied Clay Science, 38(1-2), pp.23-32. Available at: https://doi.org/10.1016/j.clay.2007.02.001.
Amar, M., Benzerzour, M., Safhi, A.E.M. & Abriak, N.-E. 2018. Durability of a cementitious matrix based on treated sediments. Case Studies in Construction Materials, 8, pp.258-276. Available at: https://doi.org/10.1016/j.cscm.2018.01.007.
Aoual-Benslafa, F.K., Kerdal, D., Ameur, M., Mekerta, B. & Semcha, A. 2015. Durability of Mortars Made with Dredged Sediments. Procedia Engineering, 118, pp.240-250. Available at: https://doi.org/10.1016/j.proeng.2015.08.423.
Arnould, M. & Virlogeux, M. & 1986. Granulats et bétons légers. Champs-sur-Marne, France: Presses de l'école nationale des Ponts et Chaussées. ISBN: 978-2-85978-086-9.
Bédérina, M., Khenfer, M.M., Dheilly, R.M. & Quéneudec, M. 2005. Reuse of local sand: effect of limestone filler proportion on the rheological and mechanical properties of different sand concretes. Cement and Concrete Research, 35(6), pp.1172-1179. Available at: https://doi.org/10.1016/j.cemconres.2004.07.006.
Bederina, M., Makhloufi, Z., Bounoua, A., Bouziani, T. & Quéneudec, M. 2013. Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions. Construction and Building Materials, 47, pp.146-158, Available at: https://doi.org/10.1016/j.conbuildmat.2013.05.037.
Bell, F.G. 1993. Engineering Treatment of Soils, 1st Edition. London: CRC Press. Abailable at: https://doi.org/10.1201/9781482288971.
Benyamina, S., Menadi, B., Bernard, S. & Kenai S. 2019. Performance of self-compacting concrete with manufactured crushed sand. Advances in concrete construction, 7(2), pp.87-96, Available at: https://doi.org/10.12989/acc.2019.7.2.087.
Bin Kabit, M.R., Sarkawi, S.S.R., Mannan, M.D.A. & Adebayo, J.O. 2021. Effect of Silica Fume and Synthetic Fibre towards the Compressive Strength of Modified Crumb Rubber Cement Mortar. Defect and Diffusion Forum, 411, pp.135-142. Available at: https://doi.org/10.4028/www.scientific.net/DDF.411.135.
Cepuritisa, R., Jacobsena, S., Pedersenc, B. & Mørtsell, E. 2016. Crushed sand in concrete – Effect of particle shape in different fractions and filler properties on rheology. Cement and Concrete Composites, 74, pp.26-41. Available at: https://doi.org/10.1016/j.cemconcomp.2016.04.004.
Cetin, H., Fener, M. & Gunaydin, O. 2006. Geotechnical properties of tire-cohesive clayey soil mixtures as fill material. Engineering Geology, 88(1-2), pp.110-120. Available at: https://doi.org/10.1016/j.enggeo.2006.09.002.
Cherrak, M., Bali, A. & Silhadi, K. 2013. Concrete mix design containing calcareous tuffs as a partial sand substitution. Construction and Building Materials, 47, pp.318-323. Available at: https://doi.org/10.1016/j.conbuildmat.2013.05.051.
Chouhan, H.S., Kalla, P., Nagar, R., Gautam, P.K. & Arora, A.N. 2020. Investigating use of dimensional limestone slurry waste as fine aggregate in mortar. Environment, Development and Sustainability, 22, pp.2223-2245. Available at: https://doi.org/10.1007/s10668-018-0286-9.
Corinaldesi, V. 2012. Recycled-Aggregate Bedding Mortars for Repair of Historical Buildings. Applied Mechanics and Materials, 174-177, pp.1481-1488. Available at: https://doi.org/10.4028/www.scientific.net/AMM.174-177.1481.
D'Antino, T., Carozzi, F.G. & Poggi, C. 2019. Diagonal Compression of Masonry Walls Strengthened with Composite Reinforced Mortar. Key Engineering Materials, 817, pp.528-535. Available at: https://doi.org/10.4028/www.scientific.net/KEM.817.528.
Fonti, V., Dell'Anno, A. & Beolchini, F. 2013. Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment. Water Research, 47(14), pp.5139-5152, Available at: https://doi.org/10.1016/j.watres.2013.05.052.
Gupta, T., Siddique, S., Sharma, R.K. & Chaudhary, S. 2019. Behaviour of waste rubber powder and hybrid rubber concrete in aggressive environment. Construction and Building Materials, 217, pp.283-291. Available at: https://doi.org/10.1016/j.conbuildmat.2019.05.080.
Jiang, W., Zhu, H., Haruna, S.I., Shao, J., Yu, Y. & Wu, K. 2022. Mechanical properties and freeze–thaw resistance of polyurethane-based polymer mortar with crumb rubber powder. Construction and Building Materials, 352, art.number:129040. Available at: https://doi.org/10.1016/j.conbuildmat.2022.129040.
Khan, I.M., Kabir, S., Alhussain, M.A. & Almansoor, F.F. 2016. Asphalt Design Using Recycled Plastic and Crumb-rubber Waste for Sustainable Pavement Construction. Procedia Engineering,145, pp.1557-1564. Available at: https://doi.org/10.1016/j.proeng.2016.04.196.
Khorrami, M., Vafai, A., Khalilitabas, A.A., Desai, C.S. & Ardakani, M.H.M. 2010. Experimental Investigation on Mechanical Characteristics and Environmental Effects on Rubber Concrete. International Journal of Concrete Structures and Materials, 4(1), pp.17-23. Available at: https://doi.org/10.4334/IJCSM.2010.4.1.017.
Lam, N.N. 2020. A Study on Using Crushed Sand to Replace Natural Sand in High-Strength Self-compacting Concrete Towards Sustainable Development in Construction. In: IOP Conference Series: Earth and Environmental Science; 6th International Conference on Environment and Renewable Energy, Hanoi, Vietnam, 505, art.number:012003, February 24-26. Available at: https://doi.org/10.1088/1755-1315/505/1/012003.
Li, X. & Liu, J. 2021. One-dimensional compression feature and particle crushability behavior of dry calcareous sand considering fine-grained soil content and relative compaction. Bulletin of Engineering Geology and the Environment, 80, pp.4049-4065. Available at: https://doi.org/10.1007/s10064-021-02160-2.
Lu, L.L., Zhang, R. & Zhang, Y.B. 2022. Experimental Study of Cement Mortar on Compressive Strength and Wave Velocity Characteristics for Different Sand/Cement Ratio and Particle Sizes. Key Engineering Materials, 931, pp.199-204. Available at: https://doi.org/10.4028/p-dlhef1.
Ma, Z., Shen, J., Wang, C. & Wu, H. 2022. Characterization of sustainable mortar containing high-quality recycled manufactured sand crushed from recycled coarse aggregate. Cement and Concrete Composites, 132, art.number:104629. Available at: https://doi.org/10.1016/j.cemconcomp.2022.104629.
Nakhaei, A., Marandi, S.M., Sani Kermani, S. & Bagheripour, M.H. 2012. Dynamic properties of granular soils mixed with granulated rubber. Soil Dynamics and Earthquake Engineering, 43, pp.124-132. Available at: https://doi.org/10.1016/j.soildyn.2012.07.026.
-NBN Bureau of Normalization. 1999. NBN EN 1015-10:1999: Méthodes d'essai des mortiers pour la maçonnerie - Partie 10: Détermination de la masse volumique apparente séche du mortier durci [online]. Available at: https://app.nbn.be/data/r/platform/frontend/detail?p40_id=273242&p40_language_code=fr&p40_detail_id=101336&lang=fr [Accessed: 29 March 2024].
Okagbue, C.O. & Onyeobi, T.U.S. 1999. Potential of marble dust to stabilize red tropical soils for road construction. Engineering Geology, 53(3-4), pp.371-380. Available at: https://doi.org/10.1016/S0013-7952(99)00036-8.
Pavia, S. & Toomey, A.B. 2008. Influence of the aggregate quality on the physical properties of natural feebly-hydraulic lime mortars. Materials and Structures, 41, pp.559-569. Available at: https://doi.org/10.1617/s11527-007-9267-4.
Rattanaveeranon, S., Dumrongsil, S. & Jiamwattanapong, K. 2019. Effect of Latex Rubber and Rubber Powder as an Admixture on Bending Strength of Cement Mortar. Applied Mechanics and Materials, 891, pp.180-186. Available at: https://doi.org/10.4028/www.scientific.net/AMM.891.180.
Schmitz, R.M., Schreoder, C. & Charlier, R. 2004. Chemo-mechanical interactions in clay a correlation between clay mineralogy and Atterberg limits. Applied Clay Science, 26(1-4), pp.351-358. Available at: https://doi.org/10.1016/j.clay.2003.12.015.
Sellaf, H., Balegh, B. & Bkhiti, M. 2023. The Assessment and Treatment of Dredged Sediments and Limestone Tuff Using Waste Ceramic with Low-Cement. Advanced Engineering Forum, 48, pp.45-58. Available at: https://doi.org/10.4028/p-2j4d93.
Singh, L.P., Goel, A., Bhattachharyya, S.K., Ahalawat, S., Sharma, U. & Mishra, G. 2015. Effect of Morphology and Dispersibility of Silica Nanoparticles on the Mechanical Behaviour of Cement Mortar. International Journal of Concrete Structures and Materials, 9(2), pp.207-217. Available at: https://doi.org/10.1007/s40069-015-0099-2.
Sivapullaiah, P.V., Sridharan, A. & Bhaskar Raju, K.V. 2000. Role of amount and type of clay in the lime stabilization of soils. Proceedings of the Institution of Civil Engineers - Ground Improvement, 4(1), pp.37-45. Available at: https://doi.org/10.1680/grim.2000.4.1.37.
Srivastava, A. & Singh, S.K. 2020. Utilization of alternative sand for preparation of sustainable mortar: A review. Journal of Cleaner Production, 253, art.number:119706, Available at: https://doi.org/10.1016/j.jclepro.2019.119706.
Su, P., Dai, Q., Li, M., Ma, Y. & Wang, J. 2022. Investigation of the mechanical and Shrinkage properties of plastic-rubber compound modified cement mortar with recycled tire steel fiber. Construction and Building Materials, 334, art.number:127391. Available at: https://doi.org/10.1016/j.conbuildmat.2022.127391.
Torres, M.L. & García-Ruiz, P.A. 2009. Lightweight pozzolanic materials used in mortars: Evaluation of their influence on density, mechanical strength and water absorption. Cement and Concrete Composites, 31(2), pp.114-119. Available at: https://doi.org/10.1016/j.cemconcomp.2008.11.003.
Trouzine, H., Bekhiti, M. & Asroun, A. 2012. No AccessEffects of scrap tyre rubber fibre on swelling behaviour of two clayey soils in Algeria. Geosynthetics International, 19(2), pp.124-132, Available at: https://doi.org/10.1680/gein.2012.19.2.124.
Wang, J.-J., Zhang, H.-P., Deng, D.-P. & Liu, M.-W. 2013. Effects of mudstone particle content on compaction behavior and particle crushing of a crushed sandstone–mudstone particle mixture. Engineering Geology, 167, pp.1-5. Available at: https://doi.org/10.1016/j.enggeo.2013.10.004.
Wei, C.B., Othman, R., Sheng, T.W., Jaya, R.P. & Al Bakri Abdullah, M.M. 2021. Properties of Mortar with Waste Tyre Rubber as Partial Sand Replacement. Key Engineering Materials, 879, pp.49-61. Available at: https://doi.org/10.4028/www.scientific.net/KEM.879.49.
Sva prava zadržana (c) 2025 Adda Hadj Mostefa, Benamar Balegh, Hamid Sellaf, Mohamed Elamine Dahamni

Ovaj rad je pod Creative Commons Autorstvo 4.0 međunarodnom licencom.
Vojnotehnički glasnik omogućava otvoreni pristup i, u skladu sa preporukom CEON-a, primenjuje Creative Commons odredbe o autorskim pravima:
Autori koji objavljuju u Vojnotehničkom glasniku pristaju na sledeće uslove:
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga Creative Commons licencom koja omogućava drugima da dele rad uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju rada objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je rad izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni rad onlajn (npr. u institucionalnom repozitorijumu ili na svojim internet stranicama) pre i tokom postupka prijave priloga, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog rada (up. Efekat otvorenog pristupa).